
1

INTEGRAL UNIVERSITY,LUCKNOW
DIRECTORATE OF DISTANCE EDUCATION

 BCA-505 Paper Code: LOS/B
LINUX OPERATING SYSTEM

2

DISCLAIMER: This academic material is not for sale. This academic material is not produced for any commercial benefit. We thank to all
writers, authors and publishers whose books strengthen us while preparing this material .Copy right of the content rest with the various original
content writers/authors/publishers.

3

CONTENTS
UNIT-1 INTRODUCRION TO LINUX

UNIT-2 GETTING STARTED WITH LINUX

UNIT-3 THE SHELL

UNIT-4 THE SHELL SCRIPTS AND PROGRAMMING

UNIT-5 SHELL CONFIGURATION

UNIT-6 LINUX FILES, DIRECTORIES ANDARCHIEVES

UNIT-7 NETWORKING, INTERNET AND WEB

UNIT-8 PROGRAMMING IN LINUX

UNIT-9 I/O AND PROCESS CONTROL SYSTEM CALLS

BIBLIOGRAPHY

4

5

INTRODUCTION TO LINUX

NOTES
UNIT: 1-INTRODUCTION TO

LINUX
Contents
 Introduction to Linux
 Linux Distribution
 Operating Syatem and Linux
 Linux
 Unix
 Open Source Software
 Software Repositories
 Online Linux Information
 Souces
 Linux Documentation
 Review & Self Assessment Question
 Further Readings

Introduction to Linux
Linux is a fast and stable open source operating system for personal
computers (PCs) and workstations that features professional-level Internet
services, extensive development tools, fully functional graphical user
interfaces (GUIs), and a massive number of applications ranging from
office suites to multimedia applications. Linux was developed in the early
1990s by Linus Torvalds, along with other programmers around the world.
As an operating system, Linux performs many of the same functions as
Unix, Macintosh, Windows, and Windows NT. However, Linux is
distinguished by its power and flexibility, along with being freely
available. Most PC operating systems, such as Windows, began their
development within the confines of small, restricted PCs, which have only
recently become more versatile machines. Such operating systems are
constantly being upgraded to keep up with the ever-changing capabilities
of PC hardware. Linux, on the other hand, was developed in a different
context. Linux is a PC version of the Unix operating system that has been
used for decades on mainframes and minicomputers and is currently the
system of choice for network servers and workstations. Linux brings the
speed, efficiency, scalability, and flexibility of Unix to your PC, taking
advantage of all the capabilities that PCs can now provide.

Technically, Linux consists of the operating system program,
referred to as the kernel, which is the part originally developed by Linus
Torvalds. But it has always been distributed with a massive number of

6

LINUX OPERATING SYSTEM

NOTES

software applications, ranging from network servers and security programs
to office applications and development tools. Linux has evolved as part of
the open source software movement, in which independent programmers
joined together to provide free, high-quality software to any user. Linux
has become the premier platform for open source software, much of it
developed by the Free Software Foundation’s GNU project. Many of these
applications are bundled as part of standard Linux distributions. Currently,
thousands of open source applications are available for Linux from sites
like SourceForge, Inc.’s sourceforge.net, K Desktop Environment’s
(KDE’s) kde-apps.org, and GNU Network Object Model Environment’s
(GNOME’s) gnomefiles.org. Most of these applications are also
incorporated into the distribution repository, using packages that are
distribution compliant.

Along with Linux’s operating system capabilities come powerful
networking features, including support for Internet, intranets, and
Windows networking. As a norm, Linux distributions include fast,
efficient, and stable Internet servers, such as the web, File Transfer
Protocol (FTP), and DNS servers, along with proxy, news, and mail
servers. In other words, Linux has everything you need to set up, support,
and maintain a fully functional network. With both GNOME and KDE,
Linux also provides GUIs with that same level of flexibility and power.
Unlike Windows and the Mac, Linux enables you to choose the interface
you want and then customize it further, adding panels, applets, virtual
desktops, and menus, all with full drag-and-drop capabilities and Internet-
aware tools.

 Linux does all this at the right price. Linux is free, including the
network servers and GUI desktops. Unlike the official Unix operating
system, Linux is distributed freely under a GNU general public license as
specified by the Free Software Foundation, making it available to anyone
who wants to use it. GNU (the acronym stands for “GNUs Not Unix”) is a
project initiated and managed by the Free Software Foundation to provide
free software to users, programmers, and developers. Linux is copyrighted,
not public domain. However, a GNU public license has much the same
effect as the software’s being in the public domain. The GNU GPL is
designed to ensure Linux remains free and, at the same time, standardized.
Linux is technically the operating system kernel—the core operations—
and only one official Linux kernel exists. People sometimes have the
mistaken impression that Linux is somehow less than a professional
operating system because it is free. Linux is, in fact, a PC, workstation, and
server version of Unix. Many consider it far more stable and much more

7

INTRODUCTION TO LINUX

NOTES

powerful than Windows. This power and stability have made Linux an
operating system of choice as a network server.

To appreciate Linux completely, you need to understand the special
context in which the Unix operating system was developed. Unix, unlike
most other operating systems, was developed in a research and academic
environment. In universities, research laboratories, data centers, and
enterprises, Unix is the system most often used. Its development has
paralleled the entire computer and communications revolution over the
past several decades. Computer professionals often developed new
computer technologies on Unix, such as those developed for the
Internet.Although a sophisticated system,Unix was designed from the
beginning to be flexible. The Unix system itself can be easily modified to
create different versions. In fact, many different vendors maintain different
official versions of Unix. IBM, Sun, and Hewlett- Packard all sell and
maintain their own versions of Unix. The unique demands of research
programs often require that Unix be tailored to their own special needs.
This inherent flexibility in the Unix design in no way detracts from its
quality. In fact, this flexibility attests to the ruggedness of Unix, allowing it
to adapt to practically any environment. This is the context in which Linux
was developed. Linux is, in this sense, one other version of Unix — a
version for the PC. The development of Linux by computer professionals
working in a research like environment reflects the way Unix versions
have usually been developed. Linux is publicly licensed and free—and
reflects the deep roots Unix has in academic institutions, with their sense
of public service and support. Linux is a top-rate operating system
accessible to everyone, free of charge.
Linux Distributions
Although there is only one standard version of Linux, there are actually
several different distributions. Different companies and groups have
packaged Linux and Linux software in slightly different ways. Each
company or group then releases the Linux package, usually on a CD-ROM.
Later releases may include updated versions of programs or new software.
Some of the more popular distributions are Red Hat, Ubuntu, Mepis,
SUSE, Fedora, and Debian. The Linux kernel is centrally distributed
through ker Linux has spawned a great variety of distributions. Many aim
to provide a comprehensive solution providing support for any and all task.
These include distributions like SUSE, Red Hat, and Ubuntu. Some are
variations on other distributions, like Centos, which is based on Red Hat
Enterprise Linux, and Ubuntu, which derives from Debian Linux. Others
have been developed for more specialized tasks or to support certain

8

LINUX OPERATING SYSTEM

NOTES

features. Distributions like Debian provide cutting edge developments.
Some distributions provide more commercial versions, usually bundled
with commercial applications such as databases or secure servers. Certain
companies like Red Hat and Novell provide a commercial distribution that
corresponds to a supported free distribution. The free distribution is used to
develop new features, like the Fedora Project for Red Hat. Other
distributions like Knoppix and Ubuntu specialize in Live-CDs, the entire
Linux operating system on single CD.
Operating Systems and Linux
An operating system is a program that manages computer hardware and
software for the user. Operating systems were originally designed to
perform repetitive hardware tasks, which centered around managing files,
running programs, and receiving commands from the user. You interact
with an operating system through a user interface, which allows the
operating system to receive and interpret instructions sent by the user. You
need only send an instruction to the operating system to perform a task,
such as reading a file or printing a document. An operating system’s user
interface can be as simple as entering commands on a line or as complex as
selecting menus and icons on a desktop.

An operating system also manages software applications. To
perform different tasks, such as editing documents or performing
calculations, you need specific software applications. An editor is an
example of a software application that enables you to edit a document,
making changes and adding new text. The editor itself is a program
consisting of instructions to be executed by the computer. For the program
to be used, it must first be loaded into computer memory, and then its
instructions are executed. The operating system controls the loading and
execution of all programs, including any software applications. When you
want to use an editor, simply instruct the operating system to load the
editor application and execute it.

File management, program management, and user interaction are
traditional features common to all operating systems. Linux, like all
versions of Unix, adds two more features. Linux is a multiuser and
multitasking system. As it is a multitasking system, you can ask the system
to perform several tasks at the same time. While one task is being done,
you can work on another. For example, you can edit a file while another
file is being printed. You do not have to wait for the other file to finish
printing before you edit. As it is a multiuser system, several users can log
in to the system at the same time, each interacting with the system through
his or her own terminal.

9

INTRODUCTION TO LINUX

NOTES

As a version of Unix, Linux shares that system’s flexibility, a
flexibility stemming from Unix’s research origins. Developed by Ken
Thompson at AT&T Bell Laboratories in the late 1960s and early 1970s,
the Unix system incorporated many new developments in operating system
design. Originally, Unix was designed as an operating system for
researchers. One major goal was to create a system that could support the
researchers’ changing demands. To do this, Thompson had to design a
system that could deal with many different kinds of tasks. Flexibility
became more important than hardware efficiency. Like Unix, Linux has
the advantage of being able to deal with the variety of tasks any user may
face. The user is not confined to limited and rigid interactions with the
operating system. Instead, the operating system is thought of as making a
set of highly effective tools available to the user. This user oriented
philosophy means you can configure and program the system to meet your
specific needs. With Linux, the operating system becomes an operating
environment.
History of Unix and Linux
As a version of Unix, the history of Linux naturally begins with Unix. The
story begins in the late 1960s, when a concerted effort to develop new
operating system techniques occurred. In 1968, a consortium of researchers
from General Electric, AT&T Bell Laboratories, and the Massachusetts
Institute of Technology carried out a special operating system research
project called MULTICS (the Multiplexed Information and Computing
Service). MULTICS incorporated many new concepts in multitasking, file
management, and user interaction.
Unix

In 1969, Ken Thompson, Dennis Ritchie, and the researchers at
AT&T Bell Laboratories developed the Unix operating system,
incorporating many of the features of the MULTICS research project. They
tailored the system for the needs of a research environment, designing it to
run on minicomputers. From its inception,Unix was an affordable and
efficient multiuser and multitasking operating system.

The Unix system became popular at Bell Labs as more and more
researchers started using the system. In 1973, Dennis Ritchie collaborated
with Ken Thompson to rewrite the programming code for the UNIX
system in the C programming language.Unix gradually grew from one
person’s tailored design to a standard software product distributed by many
different vendors, such as Novell and IBM. Initially, Unix was treated as a
research product. The first versions of Unix were distributed free to the
computer science departments of many noted universities. Throughout the

10

LINUX OPERATING SYSTEM

NOTES

1970s, Bell Labs began issuing official versions of Unix and licensing the
systems to different users. One of these users was the computer science
department of the University of California, Berkeley. Berkeley added
many new features to the system that later became standard. In 1975
Berkeley released its own version of Unix, known by its distribution arm,
Berkeley Software Distribution (BSD). This BSD version of Unix became
a major contender to the AT&T Bell Labs version. AT&T developed
several research versions of Unix, and in 1983 it released the first
commercial version, called System 3. This was later followed by System
V, which became a supported commercial software product.

At the same time, the BSD version of Unix was developing through
several releases. In the late 1970s, BSD Unix became the basis of a
research project by the Department of Defense’s Advanced Research
Projects Agency (DARPA). As a result, in 1983, Berkeley released a
powerful version of Unix called BSD release 4.2. This release included
sophisticated file management as well as networking features based on
Internet network protocols—the same protocols now used for the Internet.
BSD release 4.2 was widely distributed and adopted by many vendors,
such as Sun Microsystems.

 In the mid-1980s, two competing standards emerged, one based on
the AT&T version of Unix and the other based on the BSD version.
AT&T’s Unix System Laboratories developed System V release 4. Several
other companies, such as IBM and Hewlett-Packard, established the Open
Software Foundation (OSF) to create their own standard version of Unix.
Two commercial standard versions of Unix existed then—the OSF version
and System V release 4.
Linux
 Originally designed specifically for Intel-based PCs, Linux started out at
the University of Helsinki as a personal project of a computer science
student named Linus Torvalds. At that time, students were making use of a
program called Minix, which highlighted different Unix features. Minix
was created by Professor Andrew Tanenbaum and widely distributed over
the Internet to students around the world. Linus’s intention was to create an
effective PC version of Unix for Minix users. It was named Linux, and in
1991, Linus released version 0.11. Linux was widely distributed over the
Internet, and in the following years, other programmers refined and added
to it, incorporating most of the applications and features now found in
standard Unix systems. All the major window managers have been ported
to Linux. Linux has all the networking tools, such as FTP support, web
browsers, and the whole range of network services such as email, the

11

INTRODUCTION TO LINUX

NOTES

domain name service, and dynamic host configuration, along with FTP,
web, and print servers. It also has a full set of program development
utilities, such as C++ compilers and debuggers. Given all its features, the
Linux operating system remains small, stable, and fast. In its simplest
format, Linux can run effectively on only 2MB of memory.

Although Linux has developed in the free and open environment of
the Internet, it adheres to official Unix standards. Because of the
proliferation of Unix versions in the previous decades, the Institute of
Electrical and Electronics Engineers (IEEE) developed an independent
Unix standard for the American National Standards Institute (ANSI). This
new ANSI-standard Unix is called the Portable Operating System Interface
for Computer Environments (POSIX). The standard defines how a Unix-
like system needs to operate, specifying details such as system calls and
interfaces. POSIX defines a universal standard to which all Unix versions
must adhere. Most popular versions of Unix are now POSIX-compliant.
Linux was developed from the beginning according to the POSIX standard.
Linux also adheres to the Linux file system hierarchy standard (FHS),
which specifies the location of files and directories in the Linux file
structure.

Linux development is now overseen by The Linux Foundation
(linux-foundation.org), which is a merger of The Free Standards Group
and Open Source Development Labs (OSDL). This is the group that Linus
Torvalds works with to develop new Linux versions.
Linux Overview
Like Unix, Linux can be generally divided into three major components:
the kernel, the environment, and the file structure. The kernel is the core
program that runs programs and manages hardware devices, such as disks
and printers. The environment provides an interface for the user. It receives
commands from the user and sends those commands to the kernel for
execution. The file structure organizes the way files are stored on a storage
device, such as a disk. Files are organized into directories. Each directory
may contain any number of subdirectories, each holding files. Together,
the kernel, the environment, and the file structure form the basic operating
system structure. With these three, you can run programs, manage files,
and interact with the system.

An environment provides an interface between the kernel and the
user. It can be described as an interpreter. Such an interface interprets
commands entered by the user and sends them to the kernel. Linux
provides several kinds of environments: desktops, window managers, and
command line shells. Each user on a Linux system has his or her own user

12

LINUX OPERATING SYSTEM

NOTES

interface. Users can tailor their environments to their own special needs,
whether they be shells, window managers, or desktops. In this sense, for
the user, the operating system functions more as an operating environment,
which the user can control.

In Linux, files are organized into directories, much as they are in
Windows. The entire Linux file system is one large interconnected set of
directories, each containing files. Some directories are standard directories
reserved for system use. You can create your own directories for your own
files, as well as easily move files from one directory to another. You can
even move entire directories and share directories and files with other users
on your system. With Linux, you can also set permissions on directories
and files, allowing others to access them or restricting access to yourself
alone. The directories of each user are, in fact, ultimately connected to the
directories of other users. Directories are organized into a hierarchical tree
structure, beginning with an initial root directory. All other directories are
ultimately derived from this first root directory.

With KDE and GNOME, Linux now has a completely integrated
GUI. You can perform all your Linux operations entirely from either
interface. KDE and GNOME are fully operational desktops supporting
drag-and-drop operations, enabling you to drag icons to your desktop and
to set up your own menus on an Applications panel. Both rely on an
underlying X Window System, which means as long as they are both
installed on your system, applications from one can run on the other
desktop. The GNOME and KDE sites are particularly helpful for
documentation, news, and software you can download for those desktops.
Both desktops can run any X Window System program, as well as any
cursor-based program such as Emacs and Vi, which were designed to work
in a shell environment. At the same time, a great many applications are
written just for those desktops and included with your distributions. KDE
and GNOME have complete sets of Internet tools, along with editors and
graphics, multimedia, and system applications. Check their websites at
gnome.org and kde.org for latest developments. As new versions are
released, they include new software.
Open Source Software
Linux was developed as a cooperative open source effort over the Internet,
so no company or institution controls Linux. Software developed for Linux
reflects this background. Development often takes place when Linux users
decide to work on a project together. The software is posted at an Internet
site, and any Linux user can then access the site and download the
software. Linux software development has always operated in an Internet

13

INTRODUCTION TO LINUX

NOTES

environment and is global in scope, enlisting programmers from around the
world. The only thing you need to start a Linux-based software project is a
website.

Most Linux software is developed as open source software. This
means that the source code for an application is freely distributed along
with the application. Programmers over the Internet can make their own
contributions to a software package’s development, modifying and
correcting the source code. Linux is an open source operating system as
well. Its source code is included in all its distributions and is freely
available on the Internet. Many major software development efforts are
also open source projects, as are the KDE and GNOME desktops, along
with most of their applications. The Netscape Communicator web browser
package has also become open source, with its source code freely
available. The OpenOffice office suite supported by Sun is an open source
project based on the StarOffice office suite (StarOffice is essentially Sun’s
commercial version of OpenOffice). Many of the open source applications
that run on Linux have located their websites at SourceForge
(sourceforge.net), which is a hosting site designed specifically to support
open source projects. You can find more information about the open
source movement at opensource.org.

Open source software is protected by public licenses. These prevent
commercial companies from taking control of open source software by
adding a few modifications of their own, copyrighting those changes, and
selling the software as their own product. The most popular public license
is the GNU GPL provided by the Free Software Foundation. This is the
license that Linux is distributed under. The GNU GPL retains the
copyright, freely licensing the software with the requirement that the
software and any modifications made to it always be freely available.
Other public licenses have also been created to support the demands of
different kinds of open source projects. The GNU lesser general public
license (LGPL) lets commercial applications use GNU licensed software
libraries. The qt public license (QPL) lets open source developer’s use the
Qt libraries essential to the KDE desktop. You can find a complete listing
at opensource.org
Linux is currently copyrighted under a GNU public license provided by the
Free Software Foundation, and it is often referred to as GNU software.
GNU software is distributed free, provided it is freely distributed to others.
GNU software has proved both reliable and effective. Many of the popular
Linux utilities, such as C compilers, shells, and editors, are GNU software
applications. Installed with your Linux distribution are the GNU C++ and

14

LINUX OPERATING SYSTEM

NOTES

Lisp compilers, Vi and Emacs editors, BASH and TCSH shells, as well as
TeX and Ghostscript document formatters. In addition, there are many
open source software projects that are licensed under the GNU GPL.

Under the terms of the GNU GPL, the original author retains the
copyright, although anyone can modify the software and redistribute it,
provided the source code is included, made public, and provided free.
Also, no restriction exists on selling the software or giving it away free.
One distributor could charge for the software, while another one could
provide it free of charge. Major software companies are also providing
Linux versions of their most popular applications. Oracle provides a Linux
version of its Oracle database. (At present, no plans seem in the works for
Microsoft applications.)
Linux Software
All Linux software is currently available from online repositories. You can
download applications for desktops, Internet servers, office suites, and
programming packages, among others. Software packages may be
distributed through online repositories. Downloads and updates are
handled automatically by your desktop software manager and updater.

In addition, you can download from third-party sources software
that is in the form of compressed archives or software packages like RPM
and DEB. RPM packages are those archived using the Red Hat Package
Manager, which is used on several distributions. Compressed archives
have an extension such as .tar.gz or .tar.Z, whereas RPM packages have
an .rpm extension and DEB uses a .deb extension. Any RPM package that
you download directly, from whatever site, can be installed easily with the
click of a button using a distribution software manager on a desktop. You
can also download the source version and compile it directly on your
system. This has become a simple process, almost as simple as installing
the compiled RPM versions.

Linux distributions also have a large number of mirror sites from
which you can download their software packages for current releases. If
you have trouble connecting to a main FTP site, try one of its mirrors.
Software Repositories
For many distributions, you can update to the latest software from the
online repositories using a software updater. Linux distributions provide a
comprehensive selection of software ranging from office and multimedia
applications to Internet servers and administration services. Many popular
applications are not included, though they may be provided on associated
software sites. During installation, your software installer is configured to
access your distribution repository.

15

INTRODUCTION TO LINUX

NOTES

 Because of licensing restrictions, multimedia support for popular
formats like MP3, DVD, and DivX is not included with distributions. A
distribution-associated site, however, may provide support for these
functions, and from there you can download support for MP3, DVD, and
DivX software. You can download a free licensed MP3 gstreamer plug-in.
Nvidia- or ATI-released Linux graphics drivers, but support for these can
be found at associated distribution sites. Linux distributions do include the
generic X.org Nvidia and ATI drivers, which will enable your graphics
cards to work.
Third-Party Linux Software Repositories
 Though almost all applications should be included in the distribution
software repository, you could download and install software from third-
party repositories. Always check first to see if the software you want is
already in the distribution repository. If it is not available, then download
from a third-party repository.

 Several third-party repositories make it easy to locate an
application and find information about it. Of particular note are
sourceforge.net, rpmfind.net, gnomefiles.org, and kde-apps .org. The
following tables list different sites for Linux software. Some third-party
repositories and archives for Linux software are listed in Table 1-2, along
with several specialized sites, such as those for commercial and game
software. When downloading software packages, always check to see if
versions are packaged for your particular distribution.
Linux Office and Database Software
Many professional-level databases and office suites are now available for
Linux.These include Oracle and IBM databases, as well as the OpenOffice
and KOffice suites. Table 1-3 lists sites for office suites and databases.
Most of the office suites, as well as MySQL and PostgreSQL, are already
included on the distribution repositories and may be part of your install
disk. Many of the other sites provide free personal versions of their
software for Linux, and others are entirely free. You can download from
them directly and install the software on your Linux system. URL Site
Internet Servers
One of the most important features of Linux, as of all Unix systems, is its
set of Internet clients and servers. The Internet was designed and
developed on Unix systems, and Internet clients and servers, such as those
for FTP and the Web, were first implemented on BSD versions of Unix.
DARPANET, the precursor to the Internet, was set up to link Unix systems
at different universities across the nation. Linux contains a full set of

16

LINUX OPERATING SYSTEM

NOTES

Internet clients and servers, including mail, news, FTP, and web, as well as
proxy clients and servers.
Development Resources’
 Linux has always provided strong support for programming languages and
tools. All distributions include the GNU C and C++ (gcc) compiler with
supporting tools such as make. Linux distributions usually come with full
development support for the KDE and GNOME desktops, letting you
create your own GNOME and KDE applications. You can also download
the Linux version of the Java Software Development Kit for creating Java
programs. A version of Perl for Linux is also included with most
distributions. You can download current versions from their websites.
Online Linux Information Sources
 Extensive online resources are available on almost any Linux topic. The
tables in this chapter list sites where you can obtain software, display
documentation, and read articles on the latest developments. Many Linux
websites provide news, articles, and information about Linux. Several,
such as linuxjournal.com, are based on popular Linux magazines. Some
specialize in particular areas such as linuxgames.com for the latest games
ported for Linux. Currently, many Linux websites provide news,
information, and articles on Linux developments, as well as
documentation, software links, and other resources
 Linux Documentation
Linux documentation has also been developed over the Internet. Much of
the documentation currently available for Linux can be downloaded from
Internet FTP sites. A special Linux project called the Linux Documentation
Project (LDP), headed by Matt Welsh, has developed a complete set of
Linux manuals. The documentation is available at the LDP home site,
tldp.org. Linux documents provided by the LDP are listed in Table 1-7,
along with their Internet sites. The Linux documentation for your installed
software will be available at your /usr/share/doc directory.

An extensive number of mirrors are maintained for the LDP. You
can link to any of them through a variety of sources, such as the LDP home
site, tldp.org, and linuxjournal.org. The documentation includes a user’s
guide, an introduction, and administrative guides.

These are available in text, PostScript, or web page format. You
can also find briefer explanations in what are referred to as HOW-TO
documents. Distribution websites provide extensive Linux documentation
and software. The gnome .org site holds documentation for the GNOME
desktop, while kde.org holds documentation for the KDE desktop.

17

INTRODUCTION TO LINUX

NOTES

Review & Self Assessment Question
Q1- What is operating system?
Q2- what is Linux operating system?
Q3- What do you mean by Linux Documentation?
Q4-Define the term “K Desktop Environment”
Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

18

LINUX OPERATING SYSTEM

NOTES

UNIT: 2- GETTING
STARTED WITH LINUX

Contents
 Introduction
 Install issues
 Accessing your Linux System
 The Display Manager
 Password
 GNOME
 GNOME and KDE Applets
 Resizing Desktop Fonts
 Sessions
 Command Line Interface
 Review & Self Assessment Question
 Further Readings

Introduction
Using Linux has become an intuitive process, with easy-to-use interfaces,
including graphical logins and graphical user interfaces (GUIs) like
GNOME and KDE. Even the standard Linux command line interface has
become more user friendly with editable commands, history lists, and
cursor-based tools. Distribution installation tools also use simple GUIs.
Installation has become a very easy procedure, taking only a few minutes.
The use of online repositories by many distributions allows for small initial
installs that can be later enhanced with selected additional software.

To start using Linux, you have to know how to access your Linux
system and, once you are on the system, how to execute commands and
run applications. Access is supported through either the default graphical
login or a command line login. For the graphical login, a simple window
appears with menus for selecting login options and text boxes for entering
your username and password. Once you access your system, you can then
interact with it using either a command line interface or a GUI. With GUIs
like GNOME and KDE, you can use windows, menus, and icons to interact
with your system.

Linux is noted for providing easy access to extensive help
documentation. It’s easy to obtain information quickly about any Linux
command and utility while logged in to the system. You can access an
online manual that describes each command or obtain help that provides

19

GETTING STARTED
WITH LINUX

NOTES

more detailed explanations of different Linux features. A complete set of
manuals provided by the Linux Documentation Project (LDP) is on your
system and available for you to browse through or print. Both the GNOME
and KDE desktops provide help systems that give you easy access to
desktop, system, and application help files.
Install Issues
Each distribution has its own graphical install tool that lets you install
Linux very easily. Installation is often a simple matter of clicking a few
buttons. However, install CDs and DVDs provide only a core subset of
what is available because the software available has grown so massive that
most distributions provide online repositories for downloading. Installation
is now more a matter of setting up an initial configuration that you can
later expand using these online repositories. Many distributions also allow
you to create your own install discs, customizing the collection of software
you want on your install CD/DVD. Other installation considerations
include the following:
• Most distributions provide Live-CDs that allow you to do minimal
installs. This helps you avoid a lengthy download of install CDs or DVDs.
You can then install just the packages you want from online repositories.
• The use of online repositories means that most installed software needs to
be downloaded and updated from the repositories soon after installation.
The software on install CDs and DVDs quickly becomes out of date.
• Some distributions provide updated versions of a release, including
updated software since the original release. These are often provided by
separate distribution projects. Check the distribution sites for availability.
 • Much of your hardware is now automatically detected, including your
graphics card and monitor.
 • Most distributions use parted to set up your partitions. Parted is a very
easy-to-use partition management tool.
• Installation can be performed from numerous sources, by using network
methods like NFS, File Transfer Protocol (FTP), and Hypertext Transfer
Protocol (HTTP).
 • Dual-boot installation is supported with either the GRUB or Linux
Loader (LILO) boot managers. Linux boot managers can be configured
easily to boot Windows, Mac, and other Linux installations on the same
system.
• Distributions distinguish between 32-bit and 64-bit releases. Most CPUs
in newer computers support 64-bit, whereas older or weaker systems may
not.

20

LINUX OPERATING SYSTEM

NOTES

 • Network configuration is normally automatic, using Dynamic Host
Configuration Protocol (DHCP) or IPv6 to connect to a network router.
• During installation you may have the option to customize your partitions,
letting you set up RAID and LVM file systems if you wish.
• If you are using LVM or RAID file systems, be sure you have a separate
boot partition of a standard Linux file system type.
• Most distributions perform a post-install procedure that perform basic
configuration tasks like setting the date and time, configuring your
firewall, and creating a user account (a root [administrative] account is set
up during installation).
Most distributions provide a means to access your Linux system in rescue
mode. Should your system stop working, you can access your files by
using your install disc to start up Linux with a command line interface and
access your installed file system. This allows you to fix your problem by
editing or replacing configuration files.

If you have problems with the GRUB boot loader you can reinstall
it with the grub-install command. This can happen if you later install
Windows on your system. Windows will overwrite your boot manager.
Use grub-install with the device name of the hard disk to reinstall the
Linux boot manager. Be sure to put in an entry for your Windows system.
Keep in mind that some distribution use alternative boot loaders like LILO.
Accessing Your Linux System
To access and use your Linux system, you must carefully follow required
startup and shutdown procedures. You do not simply turn off your
computer. Linux does, however, implement journaling, which allows you
to automatically recover your system after the computer suddenly loses
power and shuts off.

If you have installed the boot loader GRUB, when you turn on or
reset your computer, the boot loader first decides what operating system to
load and run. GRUB will display a menu of operating systems from which
to choose.

If, instead, you wait a moment or press the ENTER key, the boot
loader loads the default operating system. If a Windows system is listed,
you can choose to start that instead.

You can think of your Linux operating system as operating on two
different levels, one running on top of the other. The first level is when you
start your Linux system and where the system loads and runs. It has control
of your computer and all its peripherals. You still are not able to interact
with it, however. After Linux starts, it displays a login screen, waiting for a
user to log in to the system and start using it. You cannot gain access to

21

GETTING STARTED
WITH LINUX

NOTES

Linux unless you log in first. You can think of logging in and using Linux
as the next level. Now you can issue commands instructing Linux to
perform tasks. You can use utilities and programs such as editors or
compilers, or even games. Depending on a choice you made during
installation, however, you may be interacting with the system using either
a simple command line interface or the desktop directly. There are both
command line login prompts and graphical login windows. Most
distributions will use a graphical interface by default, presenting you with
a graphical login window at which you enter your username and password.
If you choose not to use the graphical interface, you are presented with a
simple command line prompt to enter your username.
The Display Managers: GDM and KDM
With the graphical login, your GUI starts up immediately and displays a
login window with boxes for a username and password. When you enter
your username and password and then press ENTER, your default GUI
starts up.

For most distributions, graphical logins are handled either by the
GNOME Display Manager (GDM) or the KDE Display Manager (KDM).
The GDM and KDM manage the login interface along with authenticating
a user password and username and then starting up a selected desktop. If
problems ever occur using the GUI, you can force an exit of the GUI with
the CTRL-ALT-BACKSPACE keys, returning to the login screen (or the
command line if you started your GUI from there). Also, from the display
manager, you can shift to the command line interface with the CTRL-
ALT-F1 keys and then shift back to the GUI with the CTRL-ALT-F7 keys.

When you log out from the desktop, you return to the display
manager Login window. From the Options menu, you can select the
desktop or window manager you want to start up. Here you can select
KDE to start up the K Desktop, for example, instead of GNOME. The
Language menu lists a variety of different languages that Linux supports.
Choose one to change the language interface.

To shut down your Linux system, click the Shutdown button. To
restart, select the Restart option from the Options menu. Alternatively, you
can also shut down or restart from your desktop. From the System menu,
select the Shutdown entry. GNOME will display a dialog screen with the
buttons Suspend, Shutdown, and Reboot. Shutdown is the default and will
occur automatically after a few seconds. Selecting Reboot will shut down
and restart your system. KDE will prompt you to end a session, shutdown,
or logout. (You can also open a Terminal window and enter the shutdown,

22

LINUX OPERATING SYSTEM

NOTES

halt, or reboot command, as described later; halt will log out and shut
down your system.)
Switching Users

Once you have logged in to your desktop, you can switch to
different user without having to log out or end your current user session.
On GNOME you use the User Switcher tool, a GNOME applet on the
panel. For KDE you use the Switch User entry on the Main menu.
User Switcher: GNOME
On GNOME, the switcher will appear on the panel as the name of the
currently logged-in user. If you left-click the name, a list of all other users
will be displayed. Check boxes next to each show which users are logged
in and running. To switch a user, select the user from this menu. If the user
is not already logged in, the login manager (the GDM) will appear and you
can enter that user’s password. If the user is already logged in, then the
Login window for the lock screen will appear (you can disable the lock
screen). Just enter the user’s password. The user’s original session will
continue with the same open windows and applications running as when
the user switched off. You can easily switch back and forth between
logged in users, with all users retaining their session from where they left
off. When you switch off from a user, that user’s running programs will
continue in the background.

Right-clicking the switcher will list several user management items,
such as configuring the login screen, managing users, or changing the
user’s password and personal information. The Preferences item lets you
configure how the User Switcher is displayed on your panel. Instead of the
user’s name, you could use the term Users or a user icon. You can also
choose whether to use a lock screen when the user switches. Disabling the
lock screen option will let you switch seamlessly between logged-in users.
Switch User: KDE
On KDE, the Switch User entry on the Main menu will display a list of
users you can change to. You can also elect to start a different session,
hiding your current one. In effect this lets you start up your desktop again
as the same user. You can also lock the current session before starting a
new one. New sessions can be referenced starting with the F7 key for the
first session. Use CTRL-ALT-F7 to access the first session and CTRL-
ALT-F8 for the second session.
Accessing Linux from the Command Line Interface
For the command line interface, you are initially given a login prompt. The
system is now running and waiting for a user to log in and use it. You can

23

GETTING STARTED
WITH LINUX

NOTES

enter your username and password to use the system. The login prompt is
preceded by the hostname you gave your system. In this example, the
hostname is turtle. When you finish using Linux, you first log out. Linux
then displays exactly the same login prompt, waiting for you or another
user to log in again. This is the equivalent of the Login window provided
by the GDM. You can then log in to another account.
Logging In and Out with the Command Line
Once you log in to an account, you can enter and execute commands.
Logging in to your Linux account involves two steps: entering your
username and then entering your password. Type in the username for your
user account. If you make a mistake, you can erase characters with the
BACKSPACE key. In the next example, the user enters the username
richlp and is then prompted to enter the password:
Password:

When you type in your password, it does not appear on the screen.
This is to protect your password from being seen by others. If you enter
either the username or the password incorrectly, the system will respond
with the error message “Login incorrect” and will ask for your username
again, starting the login process over. You can then reenter your username
and password.

Once you enter your username and password correctly, you are
logged in to the system. Your command line prompt is displayed, waiting
for you to enter a command. Notice the command line prompt is a dollar
sign ($), not a number sign (#). The $ is the prompt for regular users,
whereas the # is the prompt solely for the root user. In this version of
Linux, your prompt is preceded by the hostname and the directory you are
in. Both are bounded by a set of brackets.

[turtle /home/richlp]$
To end your session, issue the logout or exit command. This

returns you to the login prompt, and Linux waits for another user to log in:
 [turtle /home/richlp]$ logout

Shutting Down Linux from the Command Line
If you want to turn off your computer, you must first shut down Linux. Not
shutting down Linux may require Linux to perform a lengthy systems
check when it starts up again. You shut down your system in either of two
ways. First log in to an account and then enter the halt command. This
command will log you out and shut down the system.

$ halt
Alternatively, you can use the shutdown command with the -h option. Or,
with the -r option, the system shuts down and then reboots. In the next

24

LINUX OPERATING SYSTEM

NOTES

example, the system is shut down after five minutes. To shut down the
system immediately, you can use +0 or the word now.

shutdown -h now
You can also force your system to reboot at the login prompt by holding
down the CTRL and ALT keys and then pressing the DEL key (CTRL-
ALT-DEL). Your system will go through the standard shutdown procedure
and then reboot your computer.
The GNOME and KDE Desktops
Two alternative desktop GUIs can be installed on most Linux systems:
GNOME and KDE. Each has its own style and appearance. GNOME uses
the Clearlooks theme for its interface with the distribution screen
background and menu icon as its default.

It is important to keep in mind that though the GNOME and KDE
interfaces appear similar, they are really two very different desktop
interfaces with separate tools for selecting preferences. The Preferences
menus on GNOME and KDE display very different selections of desktop
configuration tools.

Though GNOME and KDE are wholly integrated desktops, they in
fact interact with the operating system through a window manager—
Metacity in the case of GNOME and the KDE window manager for KDE.
You can use a different GNOME- or KDE-compliant window manager if
you wish, or simply use a window manager in place of either KDE or
GNOME.
KDE
The K Desktop Environment (KDE) displays a panel at the bottom of the
screen that looks very similar to one displayed on the top of the GNOME
desktop. The file manager appears slightly different but operates much the
same way as the GNOME file manager. There is a Control Center entry in
the Main menu that opens the KDE control center, from which you can
configure every aspect of KDE, such as themes, panels, peripherals like
printers and keyboards, even the KDE file manager’s web browsing
capabilities.
XFce4
The XFce4 desktop is a new lightweight desktop designed to run fast
without the kind of overhead seen in full-featured desktops like KDE and
GNOME. It includes its own file manager and panel, but the emphasis is
on modularity and simplicity. The desktop consists of a collection of
modules, including the xffm file manager, the xfce4-panel panel, and the
xfwm4 window manager. In keeping with its focus on simplicity, its small

25

GETTING STARTED
WITH LINUX

NOTES

scale makes it appropriate for laptops or dedicated systems that have no
need for the complex overhead found in other desktops.
GNOME
The GNOME desktop display shows three menus: Applications, Places,
and System. The Places menu lets you easily access commonly used
locations like your home directory, the desktop folder for any files on your
desktop, and the Computer window, through which you can access
devices, shared file systems, and all the directories on your local system.
The System menu includes Preferences and Administration menus. The
Preferences menu is used for configuring your GNOME settings, such as
the theme you want to use and the behavior of your mouse.

To move a window, left-click and drag its title bars. Each window
supports Maximize, Minimize, and Close buttons. Double-clicking the title
bar will maximize the window. Each window will have a corresponding
button on the bottom panel. You can use this button to minimize and
restore the window. The desktop supports full drag-and-drop capabilities.
You can drag folders, icons, and applications to the desktop or other file
manager windows open to other folders. The move operation is the default
drag operation. To copy files, press the CTRL key and then click and drag
before releasing the mouse button. To create a link, hold both the CTRL
and SHIFT keys while dragging the icon to the location where you want
the link, such as the desktop.

GNOME provides several tools for configuring your desktop.
These are listed in the System | Preferences menu. Configuration
preference tools are organized into several submenus: Personal, Look and
Feel, Internet and Network, Hardware, and System. Those that do not fall
into any category are listed directly. Several are discussed in different
sections in this and other chapters. The Help button on each preference
window will display detailed descriptions and examples. Some of the more
important tools are discussed here.

The Keyboard Shortcuts configuration (Personal | Keyboard
Shortcuts) lets you map keys to certain tasks, for example, mapping
multimedia keys on a keyboard to media tasks such as play and pause. The
File Management configuration (Personal | File Management) lets you
determine the way files and directories are displayed, along with added
information to show in icon captions or list views. The Windows
configuration (Look and Feel | Windows) is where you can enable features
like window roll-up, window movement key, and mouse window selection.

 The Mouse and Keyboard preferences are the primary tools for
configuring your mouse and keyboard (Hardware | Keyboard and

26

LINUX OPERATING SYSTEM

NOTES

Hardware | Mouse). The Mouse preferences let you choose a mouse image
and configure its motion and hand orientation. The Keyboard preferences
window shows several panels for selecting your keyboard model (Layout),
configuring keys (Layout Options) and repeat delay (Keyboard), and even
enforcing breaks from power typing as a health precaution.
GNOME and KDE Applets
GNOME applets are small programs that operate off your panel. It is very
easy to add applets. Right-click the panel and select the Add entry. This
lists all available applets. Some helpful applets are dictionary lookup; the
current weather; the system monitor, which shows your CPU usage; the
CPU Frequency Scaling Monitor for Cool and Quiet processors; and
Search, which searches your system for files, as well as Lock, Shutdown,
and Logout buttons. Some of these, including Find, Lock, and Logout, are
already on the Places menu. You can drag these directly from the menu to
the panel to add the applet. Following the web browser and email icons,
you have, from left to right: Search for files, dictionary lookup, Tomboy
note taker, Network connection monitor, CPU scaling monitor, System
Monitor, Weather report, Eyes that follow your mouse around, User
Switcher, and the Logout, Shutdown, and Lock Screen buttons.

On KDE, right-click the panel and select Add Applet to Panel.
From the KDE applets window, you can select similar applets such as
System Monitor and Sound Mixer.
Starting a GUI from the Command Line
Once logged in to the system from the command line, you still have the
option of starting an X Window System GUI, such as GNOME or KDE. In
Linux, the command startx starts a desktop. The startx command starts
the GNOME desktop by default. Once you shut down the desktop, you will
return to your command line interface, still logged in.

$ startx
Desktop Operations
There are several desktop operations that you may want to take advantage
of when first setting up your desktop. These include selecting themes,
setting your font sizes larger for high resolution monitors, burning
CD/DVD discs, searching your desktop for files, using removable media
like USB drives, and accessing remote hosts.
Desktop Themes
On GNOME, you use the Themes Preferences tool to select or customize a
theme. Themes control your desktop appearance. When you open the
Theme tool, a list of currently installed themes is shown. The GNOME

27

GETTING STARTED
WITH LINUX

NOTES

theme is initially selected. You can move down the list to select a different
theme if you wish.

The true power of Themes is in the ability it provides users to
customize any given theme. Themes are organized into three components:
controls, window border, and icons. Controls cover the appearance of
window and dialog controls such as buttons and slider bars. Window
border specifies how title bars, borders, and window buttons are displayed.
Icons specify how all icons used on the desktop are displayed, whether on
the file manager, desktop, or the panel. You can mix and match
components from any installed theme to make your own theme. You can
even download and install separate components like specific icon sets,
which you can then use in a customized theme.

 Clicking the Customize button will open a Themes Details window
with panels of the different theme components. The ones used for the
current theme will be already selected. In the control, window border, and
icon panels you will see listings of the different installed themes. An
additional Color panel lets you set the background and text colors for
windows, input boxes, and selected items. You can then mix and match
different components like icons, window styles, and controls, creating your
own customized theme. Upon selecting a component, your desktop
automatically changes, showing you how it looks.

One you have created a new customized theme, a Custom Theme
entry will appear in the theme list. To save the customized theme, click the
Save Theme button. This opens a dialog where you can enter a theme
name, any notes, and specify whether you want to also keep the theme
background. The saved theme then appears in the theme listing.

 On KDE, open the Theme manager in the KDE Control Center
under Appearances and Themes. Select the theme you want from the
Theme panel. The selected theme will be displayed on the facing panel.
Buttons in the Customize section let you build a customized theme,
selecting background, icons, colors, styles, fonts, and even screensavers.
To download new themes, click the Get new themes link in the upper right
corner. This opens the Kde-look web page for KDE themes. You will have
to download themes, extract them, and then click the Install theme button,
locating and selecting the downloaded theme's .kth file. This method
works only for themes in the Theme manager format, kth. Themes not in
this format have to be installed manually.

GNOME themes and icons installed directly by a user are placed in
the .themes and .icons directories in the user's home directory. Should you
want these themes made available for all users, you can move them from

28

LINUX OPERATING SYSTEM

NOTES

the .themes and .icons directories to the /usr/share/ icons and
/usr/share/themes directories. Be sure to log in as the root user. You then
need to change ownership of the moved themes and icons to the root user:

chown -R root:root /usr/share/themes/newtheme
 User KDE themes are placed in the
.kde/share/apps/kthememanager directory.

Fonts
Most distributions now use the fontconfig method for managing fonts. You
can easily change font sizes, add new fonts, and configure features like
anti-aliasing. Both GNOME and KDE provide tools for selecting, resizing,
and adding fonts.
Resizing Desktop Fonts
With very large monitors and their high resolutions becoming more
common, one feature users find helpful is the ability to increase the
desktop font sizes. On a large widescreen monitor, resolutions less than the
native one tend not to scale well. A monitor always looks best in its native
resolution. However, with a large native resolution like 1900 × 1200, text
sizes become so small they are hard to read. You can overcome this issue
by increasing the font size. Use the font tools on your desktop to change
these sizes (System | Preferences | Look And Feel | Fonts on GNOME; for
KDE, select the Fonts entry in the Control Center's Appearance and
Themes).
Adding Fonts

To add a new font (for both GNOME and KDE), just enter the
fonts:/ URL in a file manager window. This opens the font window. Drag
and drop your font file to it. When you restart, your font will be available
for use on your desktop. KDE will have Personal and System folders for
fonts, initially showing icons for each. For user fonts, open the Personal
Fonts window. Fonts that are Zip archived, should first be opened with the
Archive manager and then can be dragged from the archive manager to the
font viewer. To remove a font, right-click it in the font viewer and select
Move to Trash or Delete.

 User fonts will be installed to a user's .fonts directory. For fonts to
be available to all users, they have to be installed in the /usr/share/fonts
directory, making them system fonts. On KDE, you do this by opening the
System folder, instead of the Personal folder, when you start up the fonts
viewer. You can do this from any user login. Then drag any font packages
to this fonts:/System window. On GNOME, you have to log in as the root
user and manually copy fonts to the /usr/share/fonts directory. If your
system has both GNOME and KDE installed, you can install system fonts

29

GETTING STARTED
WITH LINUX

NOTES

using KDE (Konqueror file manager), and they will be available on
GNOME.

To provide speedy access to system fonts, you should create font
information cache files for the /usr/share/fonts directory. To do this, run
the fc-cache command as the root user.
Configuring Fonts
 On GNOME, to better refine your font display, you can use the font
rendering tool. Open the Font Preferences tool (System | Preferences |
Look and Feel | Fonts). In the Font Rendering section are basic font
rendering features like Monochrome, Best contrast, Best shapes, and
Subpixel smoothing. Choose the one that works best. For LCDS, choose
Subpixel smoothing. For detailed configuration, click the Details button.
Here you can set smoothing, hinting (anti-aliasing), and subpixel color
order features. The subpixel color order is hardware dependent. On KDE,
in the KDE control center, select the Fonts entry under Appearance and
Themes. Click the Use anti-aliasing for fonts check box, and then click the
Configure button to open a window to let you select hinting and subpixel
options.

On GNOME, clicking a font entry in the Fonts Preferences tool
will open a Pick a Font dialog that will list all available fonts. On KDE,
clicking any of the Choose buttons on the Control Center's Fonts panel will
also open a window listing all available fonts. You can also generate a
listing with the fc-list command. The list will be unsorted, so you should
pipe it first to the sort command. You can use fc-list with any font name or
name pattern to search for fonts, with options to search by language,
family, or styles. See the /etc/share/ fontconfig documentation for more
details.

fc-list | sort
Configuring Your Personal Information
On GNOME, the About Me preferences dialog lets you set up personal
information to be used with your desktop applications, as well as change
your password. Clicking the Image icon in the top left corner opens a
browser window where you can select the image to use. The Faces
directory is selected by default with images you can use. The selected
image is displayed to the right in the browser window. For a personal
photograph, you can use the Pictures folder. This is the Pictures folder in
your home directory. Should you place a photograph or image there, you
can then select if for your personal image. The image will be used in the
Login screen when showing your user entry. Should you want to change
your password, you can click the Change password button at the top right.

30

LINUX OPERATING SYSTEM

NOTES

There are three panels: Contact, Address, and Personal Info. On the
Contact panel you enter email (home and work), telephone, and instant
messaging addresses. On the Address panel you enter your home and work
addresses, and on the Personal Info panel you list your web addresses and
work information.

On KDE, you can select the Password panel in the Security entry
on the KDE Control Center. Here you can select a picture for your account.
Contact information is handled by other applications, like Kontact for mail
and user information.
Sessions
You can configure your desktop to restore your previously opened
windows and applications, as well as specify startup programs. When you
log out, you may want the windows you have open and the applications
you have running to be automatically started when you log back in. In
effect, you are saving your current session and having it restored it when
you log back in. For example, if you are in the middle of working on a
spreadsheet, you can save your work but not close the file. Then log out.
When you log back in, your spreadsheet will be opened automatically to
where you left off.

For GNOME, saving sessions is not turned on by default. You use
the Sessions preferences dialog's Session Options panel (System |
Preferences | Personal | Sessions) to save sessions. You can save your
current session manually or opt to have all your sessions saved
automatically when you log out, restoring them whenever you log in.

On KDE you can configure your session manager by selecting
Sessions from the KDE Components entry in the Control Center. By
default, the previous session is restored when you log in. You can also
determine default shutdown behavior.
Using Removable Devices and Media
Linux desktops now support removable devices and media such as digital
cameras, PDAs, card readers, and even USB printers. These devices are
handled automatically with an appropriate device interface set up on the fly
when needed. Such hotplugged devices are identified, and where
appropriate, their icons will appear in the file manager window. For
example, when you connect a USB drive to your system, it will be detected
and displayed as storage device with its own file system.
Installing Multimedia Support: MP3, DVD, and DivX
Because of licensing and other restrictions, many Linux distributions do
not include MP3, DVD, or DivX media support in their free versions. You
have to purchase their commercial versions, which include the appropriate

31

GETTING STARTED
WITH LINUX

NOTES

licenses for this support. Alternatively, you can obtain this support from
independent operations such as those at fluendo.com. DivX support can be
obtained from labs.divx.com/DivXLinuxCodec. Check the multimedia
information pages at your distribution website for more information.
Command Line Interface
When using the command line interface, you are given a simple prompt at
which you type in your command. Even with a GUI, you sometimes need
to execute commands on a command line. The Terminal window is no
longer available on the GNOME desktop menu. You now have to access it
from the Applications | System Tools menu. If you use Terminal windows
frequently, you may want to just drag the menu entry to the desktop to
create a desktop icon for the Terminal window. Just click to open.

Linux commands make extensive use of options and arguments. Be
careful to place your arguments and options in their correct order on the
command line. The format for a Linux command is the command name
followed by options, and then by arguments, as shown here:

$ command-name options arguments
An option is a one-letter code preceded by one or two hyphens,

which modifies the type of action the command takes. Options and
arguments may or may not be optional, depending on the command. For
example, the ls command can take an option, -s. The ls command displays
a listing of files in your directory, and the -s option adds the size of each
file in blocks. You enter the command and its option on the command line
as follows:

$ ls -s
An argument is data the command may need to execute its task. In

many cases, this is a filename. An argument is entered as a word on the
command line after any options. For example, to display the contents of a
file, you can use the more command with the file’s name as its argument.
The less or more command used with the filename mydata would be
entered on the command line as follows:

$ less mydata
The command line is actually a buffer of text you can edit. Before

you press ENTER, you can perform editing commands on the existing text.
The editing capabilities provide a way to correct mistakes you may make
when typing in a command and its options. The BACKSPACE and DEL
keys let you erase the character you just typed in. With this character-
erasing capability, you can BACKSPACE over the entire line if you want,
erasing what you entered. CTRL-U erases the whole line and enables you
to start over again at the prompt.

32

LINUX OPERATING SYSTEM

NOTES

Help Resources
A great deal of support documentation is already installed on your system
and is also accessible from online sources. Table 2-1 lists Help tools and
resources accessible on most Linux systems. Both the GNOME and KDE
desktops feature Help systems that use a browser-like interface to display
help files. To start the GNOME or KDE Help browser, select the Help
entry in the main menu. You can then choose from the respective desktop
user guides, including the KDE manual, Linux Man pages, and GNU info
pages. The GNOME Help Browser also accesses documents for GNOME
applications such as the File Roller archive tool and Evolution mail client.
The GNOME Help browser and the KDE Help Center also incorporate
browser capabilities, including bookmarks and history lists for documents
you view.

Context-Sensitive Help
Both GNOME and KDE, along with applications, provide context-
sensitive help. Each KDE and GNOME application features detailed
manuals that are displayed using their respective Help browsers. Also,
system administrative tools feature detailed explanations for each task.
Application Documentation
On your system, the /usr/share/doc directory contains documentation files
installed by each application. Within each directory, you can usually find
HOW-TO, README, and INSTALL documents for that application.
 The Man Pages
You can also access the Man pages, which are manuals for Linux
commands available from the command line interface, using the man
command. Enter man with the command for which you want information.
The following example asks for information on the ls command:

$ man ls
Pressing the SPACEBAR key advances you to the next page.

Pressing the B key moves you back a page. When you finish, press the Q
key to quit the Man utility and return to the command line. You activate a
search by pressing either the slash (/) or question mark (?). The / searches
forward; the ? searches backward. When you press the /, a line opens at the

33

GETTING STARTED
WITH LINUX

NOTES

bottom of your screen, and you then enter a word to search for. Press
ENTER to activate the search. You can repeat the same search by pressing
the N key. You needn’t reenter the pattern.
The Info Pages
Online documentation for GNU applications, such as the GNU C and C++
compiler (gcc) and the Emacs editor, also exist as info pages accessible
from the GNOME and KDE Help Centers. You can also access this
documentation by entering the command info. This brings up a special
screen listing different GNU applications. The info interface has its own
set of commands. You can learn more about it by entering info info.
Typing m opens a line at the bottom of the screen where you can enter the
first few letters of the application. Pressing ENTER brings up the info file
on that application.
 Software Repositories
For most Linux distributions, software has grown so large and undergoes
such frequent updates that it no longer makes sense to use discs as the
primary means of distribution. Instead, distribution is effected using an
online software repository. This repository contains an extensive collection
of distribution-compliant software.
This entire approach heralds a move from thinking of most Linux software
as something included on a few discs to viewing the disc as a core from
which you can expand your installed software as you like from online
repositories. Most software is now located at the Internet-connected
repositories. You can now think of that software as an easily installed
extension of your current collection. Relying on disc media for your
software has become, in a sense, obsolete.
Windows Access and Applications
In many cases, certain accommodations need to be made for Windows
systems. Most Linux systems are part of networks that also run Windows
systems. Using Linux Samba servers, your Linux and Windows systems
can share directories and printers. In addition, you may also need to run a
Windows application directly on your Linux system. Though there is an
enormous amount of Linux software available, in some cases you may
need or prefer to run a Windows application. The Wine compatibility layer
allows you to do just that for many Windows applications (but not all).
Setting up Windows Network Access: Samba
Most local and home networks may include some systems working on
Microsoft Windows and others on Linux. You may need to let a Windows
computer access a Linux system or vice versa. Windows, because of its

34

LINUX OPERATING SYSTEM

NOTES

massive market presence, tends to benefit from both drivers and
applications support not found for Linux. Though there are equivalent
applications on Linux, many of which are as good or better, some
applications run best on Windows, if for no other reason than that the
vendor only develops drivers for Windows.

One solution is to use the superior server and storage capabilities of
Linux to manage and hold data, while using Windows systems with their
unique applications and drivers to run applications. For example, you can
use a Linux system to hold pictures and videos, while using Windows
systems to show or run them. Video or pictures can be streamed through
your router to the system that wants to run them. In fact, many commercial
DVR systems use a version of Linux to manage video recording and
storage. Another use would be to enable Windows systems to use devices
like printers that may be connected to a Linux system, or vice versa.

To allow Windows to access a Linux system and Linux to access a
Windows system, you use the Samba server. Samba has two methods of
authentication, shares and users, though the shares method has been
deprecated. User authentication requires that there be corresponding
accounts in the Windows and Linux systems. You need to set up a Samba
user with a Samba password. The Samba user should be the same name as
an established account. The Windows user and Samba user can have the
same name, though a Windows user can be mapped to a Samba user. A
share can be made open to specific users and function as an extension of
the user’s storage space. On most current distributions, Samba user and
password information are kept in tdb (trivial data base) Samba database
files, which can be edited and added to using the pdbedit command.

To set up simple file sharing on a Linux system, you first need to
configure your Samba server. You can do this by directly editing the
/etc/samba/samba.conf file. If you just edit the /etc/samba/samba.conf
file, you first need to specify the name of your Windows network. Samba
provides a configuration tool called SWAT that you can use with any
browser to configurae your Samba server, adding users and setting up
shares. Some distributions, like Ubuntu, set up Samba automatically. KDE
also provides Samba configuration.

Once set up, both GNOME and KDE allow you to browse and
access Samba shares from your desktop, letting you also access shared
Windows directories and printers on other systems. On GNOME click the
Network and then the Windows Network icon on the My Computer
window. You will see an icon for your Windows network. On either

35

GETTING STARTED
WITH LINUX

NOTES

GNOME or KDE you can enter the smb: URL in the a file manager
window to access your Windows networks.

 When a Windows user wants to access the share on the Linux
system, they open their My Network Places (Network on Vista) and then
select Add a network place to add a network place entry for the share, or
View workgroup computers to see computers on your Windows network.
Selecting the Linux Samba server will display your Samba shares. To
access the share, the user will be required to enter the Samba username and
the Samba password. You have the option of having the username and
password remembered for automatic access.
Running Windows Software on Linux: Wine

Wine is a Windows compatibility layer that will allow you to run
many Windows applications natively on Linux. Though you could run the
Windows operating system on it, the actual Windows operating system is
not required. Windows applications will run as if they were Linux
applications, able to access the entire Linux file system and use Linux-
connected devices. Applications that are heavily driver dependent, such as
graphic-intensive games, most likely will not run. Others, such as
newsreaders, which do not rely on any specialized drivers, may run very
well. For some applications, you may also need to copy over specific
Windows DLLs from a working Windows system to your Wine Windows
system32 or system directory.

To install Wine on your system, search for wine on you
distributions repositories. For some distributions you may have to
download wine directly from winehq.org. Binaries for several
distributions are provided.

Once installed, a Wine menu will appear in the Applications menu.
The Wine menu holds entries for Wine configuration, the Wine software
uninstaller, and the Wine file browser, as well as a regedit registry editor, a
notepad, and a Wine help tool. ‘

To set up Wine, a user starts the Wine Configuration tool. This
opens a window with panels for Applications, Libraries (DLL selection),
Audio (sound drivers), Drives, Desktop Integration, and Graphics. On the
Applications panel you can select which version of Windows an
application is designed for. The Drives panel will list your detected
partitions, as well as your Windows-emulated drives, such as drive C:. The
C: drive is really just a directory, .wine/drive_c, not a partition of a fixed
size. Your actual Linux file system will be listed as the Z: drive.
Once configured, Wine will set up a .wine directory on the user’s home
directory (the directory is hidden, so enable Show Hidden Files in the file

36

LINUX OPERATING SYSTEM

NOTES

browser View menu to display it). Within that directory will be the drive_c
directory, which functions as the C: drive, holding your Windows system
files and program files in the Windows and Program File subdirectories.
The System and System32 directories are located in the Windows
directory. Here is where you place any needed DLL files. The Program
Files directory will hold your installed Windows programs, just as they
would be installed on a Windows Program Files directory.

To install a Windows application with Wine, you can either use the
Wine configuration tool or open a Terminal window and run the wine
command with the Windows application as an argument. The following
example installs the popular newsbin program:\

 $ wine newsbin.exe
To install with the Windows Configuration tool, select the Applications
panel and then click Add.

Some applications, such as newsbin, will also require that you use
certain DLL files from a working Windows operating system. The DLL
files are normally copied to the user’s .wine/drive_c/Windows/system32
directory.

Icons for installed Windows software will appear on your desktop.
Just double-click an icon to start up the application. It will run normally
within a Linux window, as would any Linux application.

Installing Windows fonts on Wine is a simple matter of copying
fonts from a Windows font directory to your Wine
.wine/drive_c/Windows/fonts directory. You can just copy any Windows
.ttf file to this directory to install a font. You can also use the Microsoft
common web fonts available from fontconfig.org.

Wine will use a stripped-down window style for features like
buttons and the title bar. If you want to use the XP style, download and
install the Royal theme from Microsoft. Keep in mind, however, that
supporting this theme is very resource intensive and will likely slow down
your system.
Review & Self Assessment Question

Q1- What do you mean by GDM /KDM?
Q2- What do you mean by GNOME?
Q3-What do you mean by session?
Q4-What is Comman Line Interface?

Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford

37

THE SHELL

NOTES
UNIT: 3- THE SHELL

Contents
 Shell

 The Command Line

 Command and filename Completion

 History event Handling

 Matching Single Character

 Generating Pattern

 The C Shell : Command Line Editing and History

 The TCSH Shell

 Review & Self Assessment Question

 Further Readings

Shell
The shell is a command interpreter that provides a line-oriented

interactive and non interactive interface between the user and the operating
system. You enter commands on a command line; they are interpreted by
the shell and then sent as instructions to the operating system (the
command line interface is accessible from GNOME and KDE through a
Terminal windows—Applications/Accessories menu). You can also place
commands in a script file to be consecutively executed, much like a
program. This interpretive capability of the shell provides for many
sophisticated features. For example, the shell has a set of file matching
characters that can generate filenames. The shell can redirect input and
output, as well as run operations in the background, freeing you to perform
other tasks.

Several different types of shells have been developed for Linux: the
Bourne Again shell (BASH), the Korn shell, the TCSH shell, and the Z
shell. TCSH is an enhanced version of the C shell used on many Unix
systems, especially BSD versions. You need only one type of shell to do
your work. Linux includes all the major shells, although it installs and uses
the BASH shell as the default. If you use the command line shell, you will
be using the BASH shell unless you specify another. This chapter
primarily discusses the BASH shell, which shares many of the same

38

LINUX OPERATING SYSTEM

NOTES

features as other shells. A brief discussion of the C shell, TCSH, and the Z
shell follows at the end of the chapter, noting differences.

You can find out more about shells at their respective websites, as
listed in Table 3-1. Also, a detailed online manual is available for each
installed shell. Use the man command and the shell’s keyword to access
them, bash for the BASH shell, ksh for the Korn shell, zsh for the Z shell,
and tsch for the TSCH shell. For the C shell you can use csh, which links
to tcsh. For example, the command man bash will access the BASH shell
online manual.
The Command Line
The Linux command line interface consists of a single line into which you
enter commands with any of their options and arguments. From GNOME
or KDE, you can access the command line interface by opening a terminal
window. Should you start Linux with the command line interface, you will
be presented with a BASH shell command line when you log in.
 By default, the BASH shell has a dollar sign ($) prompt, but Linux
has several other types of shells, each with its own prompt (% for the C
shell, for example). The root user will have a different prompt, the #. A
shell prompt, such as the one shown here, marks the beginning of the
command line:

$
 You can enter a command along with options and arguments at the
prompt. For example, with an -l option, the ls command will display a line
of information about each file, listing such data as its size and the date and
time it was last modified. The dash before the -l option is required. Linux
uses it to distinguish an option from an argument.

$ ls -l
If you want the information displayed only for a particular file, you can
add that file’s name as the argument, following the -l option:
$ ls -l mydata

-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
You can enter a command on several lines by typing a backslash just
before you press ENTER. The backslash “escapes” the ENTER key,
effectively continuing the same command line to the next line. In the next
example, the cp command is entered on three lines:

$ cp -1\
mydata \

/home/george/myproject/newdata
You can also enter several commands on the same line by separating them
with a semicolon (;). In effect the semicolon operates as an execute

39

THE SHELL

NOTES

operation. Commands will be executed in the sequence they are entered.
The following command executes an ls command followed by a date
command.

$ ls ; date
 You can also conditionally run several commands on the same line with
the && operator. A command is executed only if the previous one is true.
This feature is useful for running several dependent scripts on the same
line. In the next example, the ls command runs only if the date command
is successfully executed.

$ date && ls
Command Line Editing
The BASH shell, which is your default shell, has special command line
editing capabilities that you may find helpful as you learn Linux . You can
easily modify commands you have entered before executing them, moving
anywhere on the command line and inserting or deleting characters. This is
particularly helpful for complex commands. You can use the CTRL-F or
RIGHT ARROW key to move forward a character or the CTRL-B or
LEFT ARROW key to move back a character. CTRL-D or DEL deletes the
character the cursor is on, and CTRL-H or BACKSPACE deletes the
character before the cursor. To add text, you use the arrow keys to move
the cursor to where you want to insert text and type the new characters.
You can even cut words with the CTRL-W or ALT-D key and then use the
CTRL-Y key to paste them back in at a different position, effectively
moving the words. As a rule, the CTRL version of the command operates
on characters, and the ALT version works on words, such as CTRL-T to
transpose characters and ALT-T to transpose words. At any time, you can
press ENTER to execute the command. The actual associations of keys and
their tasks, along with global settings, are specified in the /etc/inputrc file.

40

LINUX OPERATING SYSTEM

NOTES

Command and Filename Completion
 The BASH command line has a built-in feature that performs command
line and filename completion. Automatic completions can be effected
using the TAB key. If you enter an incomplete pattern as a command or
filename argument, you can then press the TAB key to activate the
command and filename completion feature, which completes the pattern.
Directories will have attached to their name .If more than one command or
files has the same prefix, the shell simply beeps and waits for you to enter
the TAB key again. It then displays a list of possible command
completions and waits for you to add enough characters to select a unique
command or filename. In situations where you know there are likely
multiple possibilities, you can just press the ESC key instead of two TABs.
In the next example, the user issues a cat command with an incomplete
filename. When the user presses the TAB key, the system searches for a
match and, when it finds one, fills in the filename. The user can then press
ENTER to execute the command.

$ cat pre tab
$ cat preface

Automatic completion also works with the names of variables, users, and
hosts. In this case, the partial text needs to be preceded by a special
character indicating the type of name. Variables begin with a $ sign, so any
text beginning with a $ sign is treated as a variable to be completed.
Variables are selected from previously defined variables, like system shell
variables (see Chapter 4). Usernames begin with a tilde (~). Host names

41

THE SHELL

NOTES

begin with an @ sign, with possible names taken from the /etc/hosts file.
A listing of possible automatic completions follows:
• Filenames begin with any text or /.
• Shell variable text begins with a $ sign.
• Username text begins with a ~ sign.
 • Host name text begins with a @.
• Commands, aliases, and text in files begin with normal text.
For example, to complete the variable HOME given just $HOM, simply
enter a TAB character.

$ echo $HOM <tab>
$ echo $HOME

 If you enter just an H, then you can enter two tabs to see all possible
variables beginning with H. The command line will be redisplayed, letting
you complete the name.

$ echo $H <tab> <tab>
$HISTCMD $HISTFILE $HOME $HOSTTYPE HISTFILE $HISTSIZE
$HISTNAME
$ echo $H
You can also specifically select the kind of text to complete, using
corresponding command keys. In this case, it does not matter what kind of
sign a name begins with. For example, the ALT-~ will treat the current text
as a username. ALT-@ will treat it as a host name and ALT-$, as a
variable. ALT-! will treat it as a command. To display a list of possible
completions, use the CTRL-X key with the appropriate completion key, as
in CTRL –x-$ to list possible variable completion.

History
The BASH shell keeps a list, called a history list, of your previously
entered commands. You can display each command, in turn, on your
command line by pressing the UP ARROW key. The DOWN ARROW
key moves you down the list. You can modify and execute any of these
previous commands when you display them on your command line.

42

LINUX OPERATING SYSTEM

NOTES

History Events
In the BASH shell, the history utility keeps a record of the most recent
commands you have executed. The commands are numbered starting at
1, and a limit exists to the number of commands remembered—the
default is 500. The history utility is a kind of short-term memory,
keeping track of the most recent commands you have executed. To see
the set of your most recent commands, type history on the command line
and press ENTER. A list of your most recent commands is then
displayed, preceded by a number.

$ history
 1 cp mydata today
2 vi mydata
3 mv mydata reports
4 cd reports
5 ls

 Each of these commands is technically referred to as an event. An event
describes an action that has been taken—a command that has been
executed. The events are numbered according to their sequence of
execution. The most recent event has the largest number.
Each of these events can be identified by its number or beginning
characters in the command.
The history utility enables you to reference a former event, placing it on
your command line and enabling you to execute it. The easiest way to do
this is to use the UP ARROW and DOWN ARROW keys to place history
events on your command line, one at a time. You needn’t display the list
first with history. Pressing the UP ARROW key once places the last
history event on your command line. Pressing it again places the next
history event on your command. Pressing the DOWN ARROW key places
the next event on the command line.
You can use certain control and meta keys to perform other history
operations like searching the history list. A meta key is the ALT key, or the
ESC key on keyboards that have no ALT key. The ALT key is used here.
ALT-< will move you to the beginning of the history list; ALT-N will
search it. CTRL-S and CTRL-R will perform incremental searches,
displaying matching commands as you type in a search string. Table 3-4
lists the different commands for referencing the history list.

43

THE SHELL

NOTES

You can also reference and execute history events using the ! history
command. The! is followed by a reference that identifies the command.
The reference can be either the number of the event or a beginning set of
characters in the event. In the next example, the third command in the
history list is referenced first by number and then by the beginning
characters:

$!3
mv mydata reports
$!mv my
mv mydata reports

You can also reference an event using an offset from the end of the list. A
negative number will offset from the end of the list to that event, thereby
referencing it. In the next example, the fourth command, cd mydata, is
referenced using a negative offset, and then executed. Remember that you
are offsetting from the end of the list—in this case, event 5— up toward
the beginning of the list, event 1. An offset of 4 beginning from event 5
places you at event 2.

 $!-4
vi mydata

To reference the last event, you use a following!, as in !!. In the next
example, the command !! executes the last command the user executed—in
this case, ls:

$!!
Ls

44

LINUX OPERATING SYSTEM

NOTES

 mydata today reports
History Event Editing
You can also edit any event in the history list before you execute it. In the
BASH shell, you can do this two ways. You can use the command line
editor capability to reference and edit any event in the history list. You can
also use a history fc command option to reference an event and edit it with
the full Vi editor. Each approach involves two different editing
capabilities. The first is limited to the commands in the command line
editor, which edits only a single line with a subset of Emacs commands. At
the same time, however, it enables you to reference events easily in the
history list. The second approach invokes the standard Vi editor with all its
features, but only for a specified history event.
With the command line editor, not only can you edit the current command,
you can also move to a previous event in the history list to edit and execute
it. The CTRL-P command then moves you up to the prior event in the list.
The CTRL-N command moves you down the list. The ALT-< command
moves you to the top of the list, and the ALT-> command moves you to
the bottom. You can even use a pattern to search for a given event. The
slash followed by a pattern searches backward in the list, and the question
mark followed by a pattern searches forward in the list. The n command
repeats the search.
Once you locate the event you want to edit, you use the Emacs command
line editing commands to edit the line. CTRL-D deletes a character.
CTRL-F or the RIGHT ARROW moves you forward a character, and
CTRL-B or the LEFT ARROW moves you back a character. To add text,
you position your cursor and type in the characters you want.
If you want to edit an event using a standard editor instead, you need to
reference the event using the fc command and a specific event reference,
such as an event number.
The editor used is the one specified by the shell in the FCDIT or EDITOR
variable. This serves as the default editor for the fc command. You can
assign to the FCDIT or EDITOR variable a different editor if you wish,
such as Emacs instead of Vi. The next example will edit the fourth event,
cd reports, with the standard editor and then execute the edited event:

$ fc 4
You can select more than one command at a time to be edited and executed
by referencing a range of commands. You select a range of commands by
indicating an identifier for the first command followed by an identifier for
the last command in the range. An identifier can be the command number
or the beginning characters in the command. In the next example, the range

45

THE SHELL

NOTES

of commands 2 through 4 is edited and executed, first using event numbers
and then using beginning characters in those events: $ fc 2 4

$ fc vi c
The fc command uses the default editor specified in the FCEDIT special
variable (If FCEDIT is not defined, it checks for the EDITOR variable. If
neither is defined it uses Vi). Usually, this is the Vi editor. If you want to
use the Emacs editor instead, you use the -e option and the term emacs
when you invoke fc. The next example will edit the fourth event, cd
reports, with the Emacs editor and then execute the edited event:

$ fc -e emacs 4
Configuring History: HISTFILE and HISTSAVE
The number of events saved by your system is kept in a special system
variable called HISTSIZE. By default, this is usually set to 500. You can
change this to another number by simply assigning a new value to
HISTSIZE. In the next example, the user changes the number of history
events saved to 10:

 $ HISTSIZE=10
The actual history events are saved in a file whose name is held in a special
variable called HISTFILE. By default, this file is the .bash_history file.
You can change the file in which history events are saved, however, by
assigning its name to the HISTFILE variable. In the next example, the
value of HISTFILE is displayed. Then a new filename is assigned to it,
newhist. History events are then saved in the newhist file.

$ echo $HISTFILE
.bash_history
$ HISTFILE="newhist"
$ echo $HISTFILE
Newhist

Filename Expansion: *, ?, []
Filenames are the most common arguments used in a command. Often you
may know only part of the filename, or you may want to reference several
filenames that have the same extension or begin with the same characters.
The shell provides a set of special characters that search out, match, and
generate a list of filenames. These are the asterisk, the question mark, and
brackets (*, ?, []). Given a partial filename, the shell uses these matching
operators to search for files and expand to a list of filenames found. The
shell replaces the partial filename argument with the expanded list of
matched filenames. These filenames can then become the arguments for
commands such as ls, which can operate on many files. Table 3-5 lists the
shell’s file expansion characters.

46

LINUX OPERATING SYSTEM

NOTES

Matching Multiple Characters
The asterisk (*) references files beginning or ending with a specific set of
characters. You place the asterisk before or after a set of characters that
form a pattern to be searched for in filenames. If the asterisk is placed
before the pattern, filenames that end in that pattern are searched for. If the
asterisk is placed after the pattern, filenames that begin with that pattern
are searched for. Any matching filename is copied into a list of filenames
generated by this operation. In the next example, all filenames beginning
with the pattern “doc” are searched for and a list is generated. Then all
filenames ending with the pattern “day” are searched for and a list is
generated. The last example shows how the * can be used in any
combination of characters.

$ ls
doc1 doc2 document docs mydoc monday tuesday
$ ls doc*
doc1 doc2 document docs

47

THE SHELL

NOTES

$ ls *day
monday tuesday
$ ls m*d*
monday
$

Filenames often include an extension specified with a period and followed
by a string denoting the file type, such as .c for C files, .cpp for C++ files,
or even .jpg for JPEG image files. The extension has no special status and
is only part of the characters making up the filename. Using the asterisk
makes it easy to select files with a given extension. In the next example,
the asterisk is used to list only those files with a .c extension. The asterisk
placed before the .c constitutes the argument for ls.

$ ls *.c
calc.c main.c

You can use * with the rm command to erase several files at once. The
asterisk first selects a list of files with a given extension or beginning or
ending with a given set of characters and then it presents this list of files to
the rm command to be erased. In the next example, the rm command
erases all files beginning with the pattern “doc”:

 $ rm doc*
Matching Single Characters
The question mark (?) matches only a single character in filenames.
Suppose you want to match the files doc1 and docA, but not the file
document. Whereas the asterisk will match filenames of any length, the
question mark limits the match to just one extra character.
The next example matches files that begin with the word “doc” followed
by a single differing letter:

$ ls
doc1 docA document
$ ls doc?
doc1 docA

Matching a Range of Characters
Whereas the * and ? file expansion characters specify incomplete portions
of a filename, the brackets ([]) enable you to specify a set of valid
characters to search for. Any character placed within the brackets will be
matched in the filename. Suppose you want to list files beginning with
“doc”, but only ending in 1 or A. You are not interested in filenames
ending in 2 or B, or any other character. Here is how it’s done:

 $ ls
doc1 doc2 doc3 docA docB docD document

48

LINUX OPERATING SYSTEM

NOTES

$ ls doc[1A]
doc1 docA

You can also specify a set of characters as a range, rather than listing them
one by one. A dash placed between the upper and lower bounds of a set of
characters selects all characters within that range.The range is usually
determined by the character set in use. In an ASCII character set, the range
“a-g” will select all lowercase alphabetic characters from a through g. In
the next example, files beginning with the pattern “doc” and ending in
characters 1 through 3 are selected. Then, those ending in characters B
through E are matched.

$ ls doc[1-3]
doc1 doc2 doc3
$ ls doc[B-E]
 docBdocD

You can combine the brackets with other file expansion characters to form
flexible matching operators. Suppose you want to list only filenames
ending in either a .c or .o extension, but no other extension. You can use a
combination of the asterisk and brackets: *. [co]. The asterisk matches all
filenames, and the brackets match only filenames with extension .c or .o.

$ ls *.[co]
main.c main.o calc.c

Matching Shell Symbols
At times, a file expansion character is actually part of a filename. In these
cases, you need to quote the character by preceding it with a backslash to
reference the file. In the next example, the user needs to reference a file
that ends with the ? character, answers?. The ? is, however, a file
expansion character and would match any filename beginning with
“answers” that has one or more characters. In this case, the user quotes the
? with a preceding backslash to reference the filename.

$ ls answers\?
answers?
Placing the filename in double quotes will also quote the character.
$ ls "answers?"
answers?

This is also true for filenames or directories that have white space
characters like the space character. In this case you can either use the
backslash to quote the space character in the file or directory name, or
place the entire name in double quotes.

$ ls My\ Documents
My Documents

49

THE SHELL

NOTES

$ ls "My Documents"
My Documents

Generating Patterns
Though not a file expansion operation, {} is often useful for generating
names that you can use to create or modify files and directories. The braces
operation only generates a list of names. It does not match on existing
filenames. Patterns are placed within the braces and separated with
commas. Any pattern placed within the braces will generate a version of
the pattern, using either the preceding or following pattern, or both.
Suppose you want to generate a list of names beginning with “doc”, but
only ending in the patterns “ument”, “final”, and “draft”. Here is how it’s
done:

$ echo doc{ument,final,draft}
document docfinal docdraft

Since the names generated do not have to exist, you could use the {}
operation in a command to create directories, as shown here:

$ mkdir {fall,winter,spring}report
$ ls
fallreport springreport winterreport

Standard Input/Output and Redirection
The data in input and output operations is organized like a file. Data input
at the keyboard is placed in a data stream arranged as a continuous set of
bytes. Data output from a command or program is also placed in a data
stream and arranged as a continuous set of bytes. This input data stream is
referred to in Linux as the standard input, and the output data stream is
called the standard output. There is also a separate output data stream
reserved solely for error messages, called the standard error .
Because the standard input and standard output have the same organization
as that of a file, they can easily interact with files. Linux has a redirection
capability that lets you easily move data in and out of files. You can
redirect the standard output so that, instead of displaying the output on a
screen, you can save it in a file. You can also redirect the standard input
away from the keyboard to a file, so that input is read from a file instead of
from your keyboard.
When a Linux command is executed that produces output, this output is
placed in the standard output data stream. The default destination for the
standard output data stream is a device—in this case, the screen. Devices,
such as the keyboard and screen, are treated as files. They receive and send
out streams of bytes with the same organization as that of a byte-stream
file. The screen is a device that displays a continuous stream of bytes. By

50

LINUX OPERATING SYSTEM

NOTES

default, the standard output will send its data to the screen device, which
will then display the data.
For example, the ls command generates a list of all filenames and outputs
this list to the standard output. Next, this stream of bytes in the standard
output is directed to the screen device. The list of filenames is then printed
on the screen. The cat command also sends output to the standard output.
The contents of a file are copied to the standard output, whose default
destination is the screen. The contents of the file are then displayed on the
screen.
Redirecting the Standard Output: > and >>
Suppose that instead of displaying a list of files on the screen, you would
like to save this list in a file. In other words, you would like to direct the
standard output to a file rather than the screen. To do this, you place the
output redirection operator, the greater-than sign (>), followed by the name
of a file on the command line after the Linux command. Table 3-6 lists the
different ways you can use the redirection operators. In the next example,
the output of the ls command is redirected from the screen device to a file:

$ ls -l *.c > program list
The redirection operation creates the new destination file. If the file
already exists, it will be overwritten with the data in the standard output.
You can set the noclobber feature to prevent overwriting an existing file
with the redirection operation. In this case, the redirection operation to an
existing file will fail. You can overcome the noclobber feature by placing
an exclamation point after the redirection operator. You can place the
noclobber command in a shell configuration file to make it an automatic
default operation (see Chapter 5). The next example sets the noclobber
feature for the BASH shell and then forces the overwriting of the oldletter
file if it already exists:

$ set -o noclobber
$ cat myletter >! oldletter

Although the redirection operator and the filename are placed after the
command, the redirection operation is not executed after the command. In
fact, it is executed before the command. The redirection operation creates
the file and sets up the redirection before it receives any data from the
standard output. If the file already exists, it will be destroyed and replaced
by a file of the same name. In effect, the command generating the output is
executed only after the redirected file has been created.
In the next example, the output of the ls command is redirected from the
screen device to a file. First the ls command lists files, and in the next
command, ls redirects its file list to the listf file. Then the cat command

51

THE SHELL

NOTES

displays the list of files saved in listf. Notice the list of files in listf
includes the listf filename. The list of filenames generated by the ls
command

includes the name of the file created by the redirection operation—in this
case, listf. The listf file is first created by the redirection operation, and
then the ls command lists it along with other files.

 $ ls
mydata intro preface
 $ ls > listf $ cat listf
mydata intro listf preface

You can also append the standard output to an existing file using the >>
redirection operator. Instead of overwriting the file, the data in the standard
output is added at the end of the file. In the next example, the myletter and
oldletter files are appended to the alletters file. The alletters file will then
contain the contents of both myletter and oldletter.

$ cat myletter >> alletters
$ cat oldletter >> alletters

52

LINUX OPERATING SYSTEM

NOTES

The Standard Input
Many Linux commands can receive data from the standard input. The
standard input itself receives data from a device or a file. The default
device for the standard input is the keyboard. Characters typed on the
keyboard are placed in the standard input, which is then directed to the
Linux command. Just as with the standard output, you can also redirect the
standard input, receiving input from a file rather than the keyboard. The
operator for redirecting the standard input is the less-than sign (<). In the
next example, the standard input is redirected to receive input from the
myletter file, rather than the keyboard device (use CTRL-D to end the
typed input). The contents of myletter are read into the standard input by
the redirection operation. Then the cat command reads the standard input
and displays the contents of myletter.

 $ cat < myletter
hello Christopher
How are you today
$

You can combine the redirection operations for both standard input and
standard output. In the next example, the cat command has no filename
arguments. Without filename arguments, the cat command receives input
from the standard input and sends output to the standard output. However,
in the example the standard input has been redirected to receive its data
from a file, while the standard output has been redirected to place its data
in a file.

 $ cat < myletter > newletter
Pipes: |
You may find yourself in situations in which you need to send data from
one command to another. In other words, you may want to send the
standard output of a command to another command, not to a destination
file. Suppose you want to send a list of your filenames to the printer to be
printed. You need two commands to do this: the ls command to generate a
list of filenames and the lpr command to send the list to the printer. In
effect, you need to take the output of the ls command and use it as input for
the lpr command. You can think of the data as flowing from one command
to another. To form such a connection in Linux, you use what is called a
pipe. The pipe operator (|, the vertical bar character) placed between two

53

THE SHELL

NOTES

commands forms a connection between them. The standard output of one
command becomes the standard input for the other. The pipe operation
receives output from the command placed before the pipe and sends this
data as input to the command placed after the pipe. As shown in the next
example, you can connect the lscommand and the lpr command with a
pipe. The list of filenames output by the ls command is piped into the lpr
command.

$ ls | lpr
You can combine the pipe operation with other shell features, such as file
expansion characters, to perform specialized operations. The next example
prints only files with a .c extension. The ls command is used with the
asterisk and “.c” to generate a list of filenames with the .c extension. Then
this list is piped to the lpr command.

$ ls *.c | lpr
In the preceding example, a list of filenames was used as input, but what is
important to note is that pipes operate on the standard output of a
command, whatever that might be. The contents of whole files or even
several files can be piped from one command to another. In the next
example, the cat command reads and outputs the contents of the mydata
file, which are then piped to the lpr command:

$ cat mydata | lpr
Linux has many commands that generate modified output. For example,
the sort command takes the contents of a file and generates a version with
each line sorted in alphabetic order. The sort command works best with
files that are lists of items. Commands such as sort that output a modified
version of its input are referred to as filters. Filters are often used with
pipes. In the next example, a sorted version of mylist is generated and
piped into the more command for display on the screen. Note that the
original file, mylist, has not been changed and is not itself sorted. Only the
output of sort in the standard output is sorted.

$ sort mylist | more
The standard input piped into a command can be more carefully controlled
with the standard input argument (-). When you use the dash as an
argument for a command, it represents the standard input.
Redirecting the Standard Error:2>, >>
When you execute commands, an error could possibly occur. You may
give the wrong number of arguments, or some kind of system error could
take place. When an error occurs, the system issues an error message.
Usually such error messages are displayed on the screen, along with the
standard output. Linux distinguishes between standard output and error the

54

LINUX OPERATING SYSTEM

NOTES

standard error. In the next example, the cat command is given as its
argument the name of a file that does not exist, myintro. In this case, the
cat command simply issues an error:

$ cat myintro
cat : myintro not found
$

Because error messages are in a separate data stream from the standard
output, error messages still appear on the screen for you to see even if you
have redirected the standard output to a file. In the next example, the
standard output of the cat command is redirected to the file mydata.
However, the standard error, containing the error messages, is still directed
to the screen.

$ cat myintro > mydata
cat : myintro not found
$

You can redirect the standard error, as you can the standard output. This
means you can save your error messages in a file for future reference. This
is helpful if you need a record of the error messages. Like the standard
output, the standard error has the screen device for its default destination.
However, you can redirect the standard error to any file or device you
choose using special redirection operators. In this case, the error messages
will not be displayed on the screen.
Redirection of the standard error relies on a special feature of shell
redirection. You can reference all the standard byte streams in redirection
operations with numbers. The numbers 0, 1, and 2 reference the standard
input, standard output, and standard error, respectively. By default, an
output redirection, >, operates on the standard output, 1. You can modify
the output redirection to operate on the standard error, however, by
preceding the output redirection operator with the number 2. In the next
example, the cat command again will generate an error. The error message
is redirected to the standard byte stream represented by the number 2, the
standard error.

$ cat nodata 2> myerrors
 $ cat myerrors
cat : nodata not found
$

You can also append the standard error to a file by using the number 2 and
the redirection append operator (>>). In the next example, the user appends
the standard error to the myerrors file, which then functions as a log of
errors:

55

THE SHELL

NOTES

$ cat nodata 2>> myerrors
Jobs: Background, Kills, and Interruptions
In Linux, you not only have control over a command’s input and output,
but also over its execution. You can run a job in the background while you
execute other commands. You can also cancel commands before they have
finished executing. You can even interrupt a command, starting it again
later from where you left off. Background operations are particularly
useful for long jobs. Instead of waiting at the terminal until a command
finishes execution, you can place it in the background. You can then
continue executing other Linux commands.
Running Jobs in the Background
You execute a command in the background by placing an ampersand (&)
on the command line at the end of the command. When you place a job in
the background, a user job number and a system process number are
displayed. The user job number, placed in brackets, is the number by
which the user references the job. The system process number is the
number by which the system identifies the job. In the next example, the
command to print the file mydata is placed in the background:

$ lpr mydata &
[1] 534
$

You can place more than one command in the background. Each is
classified as a job and given a name and a job number. The command jobs
list the jobs being run in the background. Each entry in the list consists of

56

LINUX OPERATING SYSTEM

NOTES

the job number in brackets, whether it is stopped or running, and the name
of the job. The + sign indicates the job currently being processed, and the -
sign indicates the next job to be executed. In the next example, two
commands have been placed in the background. The jobs command then
lists those jobs, showing which one is currently being executed.

$ lpr intro &
 [1] 547
$ cat *.c > myprogs &
[2] 548
$ jobs
[1] + Running lpr intro
[2] - Running cat *.c > myprogs
$

Referencing Jobs
 Normally jobs are referenced using the job number, preceded by a %
symbol. You can obtain this number with the jobs command, which will
list all background jobs, as shown in the preceding example. In addition
you can also reference a job using an identifying string (see Table 3-7).
The string must be either an exact match or a partial unique match. If there
is no exact or unique match, you will receive an error message. Also, the
% symbol itself without any job number references the recent background
job. Followed by a -- it references the second previous background job.
The following example brings job 1 in the previous example to the
foreground.

fg %lpr
Job Notification
After you execute any command in Linux, the system tells you what
background jobs, if you have any running, have been completed so far. The
system does not interrupt any operation, such as editing, to notify you
about a completed job. If you want to be notified immediately when a
certain job ends, no matter what you are doing on the system, you can use
the notify command to instruct the system to tell you. The notify
command takes a job number as its argument. When that job is finished,
the system interrupts what you are doing to notify you the job has ended.
The next example tells the system to notify the user when job 2 finishes:

$ notify %2
Bringing Jobs to the Foreground
You can bring a job out of the background with the foreground command,
fg. If only one job is in the background, the fg command alone will bring it
to the foreground. If more than one job is in the background, you must use

57

THE SHELL

NOTES

the job’s number with the command. You place the job number after the fg
command, preceded by a percent sign. A bg command, usually used
second command is now in the foreground and executing. When the
command is finished executing, the prompt appears and you can execute
another command.

$ fg %2
cat *.c > myprogs
$

Canceling Jobs
If you want to cancel a job running in the background, you can force it to
end with the kill command. The kill command takes as its argument either
the user job number or the system process number. The user job number
must be preceded by a percent sign (%). You can find out the job number
from the jobs command. In the next example, the jobs command lists the
background jobs; then job 2 is canceled:

 $ jobs
 [1] + Running lpr intro
 [2] - Running cat *.c > myprogs
 $ kill %2

Suspending and Stopping Jobs
You can suspend a job and stop it with the CTRL-Z key. This places the
job to the side until it is restarted. The job is not ended; it merely remains
suspended until you want to continue. When you’re ready, you can
continue with the job in either the foreground or the background using the
fg or bg command. The fg command restarts a suspended job in the
foreground. The bg command places the suspended job in the background.
At times, you may need to place a currently running job in the foreground
into the background. However, you cannot move a currently running job
directly into the background. You first need to suspend it with CTRL-Z
and then place it in the background with the bg command. In the next
example, the current command to list and redirect .c files is first suspended
with CTRL-Z. Then that job is placed in the background.

$ cat *.c > myprogs
^Z
$ bg

 Ending Processes: ps and kill
You can also cancel a job using the system process number, which you can
obtain with the ps command. The ps command will display your processes,
and you can use a process number to end any running process. The ps
command displays a great deal more information than the jobs command

58

LINUX OPERATING SYSTEM

NOTES

does. The next example lists the processes a user is running. The PID is
time is how long the process has taken so far. COMMAND is the name of
the process.

You can then reference the system process number in a kill command. Use
the process number without any preceding percent sign. The next example
kills process 567:

$ kill 567
Check the ps Man page for more detailed information about detecting and
displaying process information. To just display a PID number, use the
output options -o pid=. Combined with the -C command option you can
display just the PID for a particular command. If there is more than one
process for that command, such as multiple bash shells, then all the PIDs
will be displayed.

$ ps -C lpr -o pid=
For unique commands, those you know have only one process running,
you can safely combine the previous command with the kill command to
end the process on one line. This avoids interactively having to display and
enter the PID to kill the process. The technique can be useful for
noninteractive operations like cron and helpful for ending open-ended
operations like video recording. In the following example, a command
using just one process, getatse, is ended in a single kill operation. The
getatsc is an hdtv recording command. Backquotes are used to first
execute the ps command to obtain the PID.

kill `ps -C getatsc -o pid=`
The C Shell: Command Line Editing and History
The C shell was originally developed for use with BSD Unix. With Linux,
it is available as an alternative shell, along with the Korn and Bourne
shells. The C shell incorporates all the core commands used in the Bourne
shell but differs significantly in more complex features such as shell
programming. The C shell was developed after the Bourne shell and was
the first to introduce new features such as command line editing and the
history utility. The Korn shell then later incorporated many of these same
features. Then the bash shell, in turn, incorporated many of the features of
all these shells. However, the respective implementations differ
significantly. The C shell has limited command line editing that allows you
to perform a few basic editing operations. C shell command line editing is
not nearly as powerful as Korn shell command line editing. The history

59

THE SHELL

NOTES

utility allows you to execute and edit previous commands. The history
utility works in much the same way in the Korn, BASH, Z, and C shells.
However, their command names differ radically, and the C shell has a very
different set of history editing operations.
On most Linux distributions, an enhanced version of the C shell is used,
called TCSH. Most of the commands are similar. You can access the C
shell with the command csh, which is a link to the TCSH shell. The
traditional prompt for the C shell is the % symbol. On some Linux
distributions the prompt may remain the unchanged $.

$ csh
%

The command for entering the TCSH shell is tcsh.
C Shell Command Line Editing L
like the BASH shell, the C shell has only limited command line editing
capabilities. They are, however, more powerful than those of the Bourne
shell. Instead of deleting only a single character, you can delete a whole
word. You can also perform limited editing operations using pattern
substitution.
The CTRL-W key erases a recently entered word. The term "word" here is
more of a technical concept that denotes how the shell parses a command.
A word is parsed on a space or tab. Any character or set of characters
surrounded by spaces or tabs is considered a word. With the CTRL-W key
you can erase the text you have entered a word at a time.

 % date who
% date

Other times you may need to change part of a word or several words in a
command line. The C shell has a pattern substitution command that allows
you to replace patterns in the command line. This substitution command is
represented by a pattern enclosed in ^ symbols. The pattern to be replaced
is enclosed between two ^. The replacement text immediately follows.

% ^pattern^newtext
 The pattern substitution operation is not solely an editing command. It is
also an execution command. Upon replacing the pattern, the corrected
command will be displayed and then executed. In the next example, the
date command has been misspelled. The shell displays an error message
saying that such a command cannot be found. You can edit that command
using the ^ symbols to replace the incorrect text. The command is then
executed.

 % dte
 dte: not found

60

LINUX OPERATING SYSTEM

NOTES

% ^dt^dat
 Date
 Sun July 5 10:30:21 PST 1992
%

C Shell History Utility
As in the BASH shell, the C shell history utility keeps a record of the most
recent commands you have executed. Table 3-8 lists the C shell history
commands. The history utility keeps track of a limited number of the most
recent commands, which are numbered from 1. The history utility

is not automatically turned on. You first have to define history with a set
command and assign to it the number of commands you want recorded.
This is often done as part of your shell configuration. In the next example,
the history utility is defined and set to remember the last five commands.
% set history=5
As in the BASH shell, the commands remembered are referred to as
events. To see the set of your most recent events, enter the word history on
the command line and press ENTER. A list of your most recent commands
is then displayed, with each event preceded by an event number.
% history
1 ls
2 vi mydata
3 mv mydata reports
4 cd reports
5 ls -F

61

THE SHELL

NOTES

Each of these events can be referenced by its event number, the beginning
characters of the event, or a pattern of characters in the event. A pattern
reference is enclosed in question marks, ?. You can re-execute any event
using the history command!. The exclamation point is followed by an
event reference such as an event number, beginning characters, or a
pattern. In the next examples, the second command in the history list is
referenced first by an event number, then by the beginning characters of
the event, and then by a pattern in the event.
%!2
 vi mydata
% !vi
vi mydata
 % !?myd?
vi mydata
You can also reference a command using an offset from the end of the list.
Preceding a number with a minus sign will offset from the end of the list to
that command. In the next example, the second command, vi mydata, is
referenced using an offset.
% !-4
vi mydata
 An exclamation point is also used to identify the last command executed.
It is equivalent to an offset of -1. In the next examples, both the offset of 1
and the exclamation point reference the last command, Is -F.
% !!
ls -F
mydata /reports
% !-1
ls -F mydata /reports
C Shell History Event Substitutions
An event reference should be thought of as a representation of the
characters making up the event. The event reference!1 actually represents
the characters “ls”. As such, you can use an event reference as part of
another command. The history operation can be thought of as a
substitution. The characters making up the event replace the exclamation
point and event reference entered on the command line. In the next
example, the list of events is first displayed. Then a reference to the first
event is used as part of a new command. The event reference!1 evaluates
to ls, becoming part of the command ls > myfiles.
% history
1 ls

62

LINUX OPERATING SYSTEM

NOTES

2 vi mydata
3 mv mydata reports
4 cd reports
 5 ls -F
% !1 > myfiles
ls > myfiles
 You can also reference particular words in an event. An event is parsed
into separated words, each word identified sequentially by a number
starting from 0. An event reference followed by a colon and a number
references a word in the event. The event reference!3:2 references the
second word in the third event. It first references the third event, mv
mydata reports, and the second word in that event mydata. You can use
such word references as part of a command. In the next example, 2:0
references the first word in the second event, vi, and replaces it with
preface.
% !2:0 preface
 vi preface
Using a range of numbers, you can reference several words in an event.
The number of the first and last word in the range are separated by a dash.
In the next example, 3:0-1 references the first two words of the third event,
mv mydata.
% !3:0-1 oldletters
The metacharacters ^ and $ represent the second word and the last word in
an event. They are used to reference arguments of the event. If you need
just the first argument of an event, then ^ references it. $ references the last
argument. The range of ^-$ references all the arguments. (The first word,
the command name, is not included.) In the next example, the arguments
used in previous events are referenced and used as arguments in the current
command. First, the first argument (the second word) in the second event,
mydata, is used as an argument in an lp command, to print a file. Then, the
last argument in the third event, reports, is used as an argument in the ls
command, to list the filenames in reports. Then the arguments used in the
third event, mydata and reports, are used as arguments in a copy
command.
% lpr !2:^
lpr mydata
% ls !3:$
ls reports
% cp !3:^-$
cp mydata reports

63

THE SHELL

NOTES

The asterisk is a special symbol that represents all the arguments in a
former command. It is equivalent to the range ^-$. The last example can be
rewritten using the asterisk, !3*.
 % cp !3*
 cp mydata reports
 In the C shell, whenever the exclamation point is used in a command, it is
interpreted as a history command reference. If you need to use the
exclamation point for other reasons, such as an electronic mail address
symbol, you have to quote the exclamation point by placing a backslash in
front of it.
 % mail garnet\!chris < mydata
C Shell History Event Editing
 You can edit history commands with a substitution command. The
substitution command operates in the same way as the ^ command for
command line editing. It replaces a pattern in a command with new text.
To change a specific history command, enter an exclamation point and the
event number of that command followed by a colon and the substitution
command. The substitution command begins with the character s and is
followed by a pattern enclosed in two slashes. The replacement text
immediately follows, ending with a slash.
% !num:s/pattern/newtext/
In the next example, the pattern “my” in the third event is changed to
“your”. The changed event is then displayed and executed.
% history
1 ls
 2 vi mydata
3 mv mydata reports
 4 cd reports
5 ls –F
 % !3:s/my/your/
mv yourdata reports
%
Preceding the s command with a g will perform a global substitution on an
event. Every instance of the pattern in the event will be changed. In the
next example, the extension of every filename in the first event is changed
from .c to .p and then executed.
% lpr calc.c
lib.c % !1:gs/.c/.p/
lpr calc.p lib.p
%

64

LINUX OPERATING SYSTEM

NOTES

 The & command will repeat the previous substitution. In the next example
the same substitution is performed on two commands, changing the
filename mydata to yourdata in both the third and second events.
% !3:s/my/your/
 mv yourdata reports
 % !2:&
vi yourdata
When you perform a history operation on a command, it is automatically
executed. You can suppress execution with a p qualifier. The p qualifier
will only display the modified command, not execute it. This allows you to
perform several operations on a command before you execute it. In the
next example, two substitution commands are performed on the third
command before it is executed.
% !3:s/mv/cp/:p Does not execute the command
cp mydata reports
% !3:s/reports/books/ Changes and executes the command
cp mydata books
%
The TCSH Shell
The TCSH shell is essentially a version of the C shell with added features.
It is fully compatible with the standard C shell and incorporates all of its
capabilities, including the shell language and the history utility. TCSH has
more advanced command line and history editing features than those found
in the original C shell. You can use either Vi or Emacs key bindings to edit
commands or history events. The TCSH shell also supports command line
completion, automatically completing a command using just the few first
characters you type in. TCSH shell has native language support, extensive
terminal management, new built-in commands, and system variables. See
the Man page for TCSH for more detailed information.
TCSH Command Line Completion
The command line has a built-in feature that performs command and
filename completion. If you enter an incomplete pattern as a filename
argument, you can press TAB to activate this feature, which will then
complete the pattern to generate a filename. To use this feature, you type
the partial name of the file on the command line and then press TAB. The
shell will automatically look for the file with that partial prefix and
complete it for you on the command line. In the next example, the user
issues a cat command with an incomplete filename. When the user presses
TAB, the system searches for a match and, upon finding one, fills in the
filename.

65

THE SHELL

NOTES

> cat pre TAB
> cat preface
If more than one file has the same prefix, the shell will match the name as
far as the filenames agree and then beep. You can then add more characters
to select one or the other.
For example:
 > ls
document docudrama
 > cat doc TAB
> cat docu beep
If, instead, you want a list of all the names that your incomplete filename
matches, you can press CTRL-D on the command line. In the next
example, the CTRL-D after the incomplete filename generates a list of
possible filenames.
> cat doc Ctrl-d
Document
Docudrama
> cat docu
The shell redraws the command line, and you can then type in the
remainder of the filename, or type in distinguishing characters, and press
TAB to have the filename completed.
> cat docudrama
TCSH History Editing
As in the C shell, the TCSH shell's history utility keeps a record of the
most recent commands you have executed. The history utility is a kind of
short-term memory, keeping track of a limited number of the most recent
commands. The history utility lets you reference a former event by placing
it on your command line and allowing you to execute it. However, you do
not need to display the list first with history. The easiest way to do this is
to use your UP ARROW and DOWN ARROW keys to place history
events on your command line one at a time. Pressing the UP ARROW key
once will place the last history event on your command line. Pressing it
again places the next history event on your command line. The DOWN
ARROW key will place the next command on the command line. You can
also edit the command line. The LEFT ARROW and RIGHT ARROW
keys move you along the command line. You can then insert text wherever
you stop your cursor. With the BACKSPACE and DELETE keys, you can
delete characters. CTRL-A moves your cursor to the beginning of the
command line, and CTRL-E moves it to the end. CTRL-K deletes the

66

LINUX OPERATING SYSTEM

NOTES

remainder of a line from the position of the cursor, and CTRL-U erases the
entire line.
The Z-Shell
The Z-shell includes all of the features of the Korn shell and adds
command line and history event features. The Z-shell performs automatic
expansion on the command line after it has been parsed. Expansions are
performed on filenames, processes, parameters, commands, arithmetic
expressions, braces, and filename generation. The Z-shell supports the use
of Vi and Emacs key bindings for referencing history events, much like the
BASH shell does. The UP ARROW and CTRL-P move you up to the
previous event, and the DOWN ARROW and CTRL-N move you down to
the next one. ESC < moves you to the first event and ESC > moves you to
the last. The RIGHT and LEFT ARROWS move through an event line.
CTRL-R CTRL-X performs a search of the history events. History events
can also be referenced using the ! symbol, much like C shell history. When
you enter the history command, a list of previous commands (called
events) will be displayed, each with a number. To reference an event, enter
the ! symbol and its number. The following example references the third
event.
!3
You can reference an event in several ways. You can use an offset from the
current command, use a pattern to identify an event, or specify the
beginning characters of an event. Table lists these alternatives.
You can use word designators to include just segments of a history event in
your command. A word designator indicates which word or words of a
given command line will be included in a history reference. A colon
separates the event number from the word designator. It can be omitted if
the word designator begins with a ^, $, * , -, or %. The words are
numbered from 0, with 0 referring to the first word in an event, and 1 to
the second word. $ references the last word. A caret, ^, references the first
argument, the first word after the command word (same as 1). You can
reference a range of words or, with *, the remaining words in an event. To
reference all the words from the third one to the end, use 3*. The * by
itself references all the arguments (from 1 on). The following example
references the second, third, and fourth words in the sixth event.
 !6:2-4

67

THE SHELL

NOTES

Review and Self Assessment Question:
Q1- What do you mean by shell?
Q2-Describe the term Comman Line ?
Q3-Define Filename Expansion with *,? & []?
Q4- Describe the term “The Standard Input”?
Q5-What is C shell ?
Q6- What is TCSH shell?
Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

68

LINUX OPERATING SYSTEM

NOTES

UNIT-4 THE SHELL SCRIPTS
AND PROGRAMMING

Contents
 Introduction
 Shell Variables
 Virgil
 Variable Values
 Quoting Commands
 Shell Scripts : User defined Command
 Scripts argument
 Environment Varible and sub Shell
 Shell Environment Variable
 Control Structure
 Review & Self Assessment Question
 Further Readings

Introduction
 A shell script combines Linux commands in such a way as to
perform a specific task. The different kinds of shells provide many
programming tools that you can use to create shell programs. You can
define variables and assign values to them. You can also define variables
in a script file and have a user interactively enter values for them when the
script is executed.The shell provides loop and conditional control
structures that repeat Linux commands or make decisions on which
commands you want to execute.You can also construct expressions that
perform arithmetic or comparison operations. All these shell programming
tools operate in ways similar to those found in other programming
languages, so if you’re already familiar with programming, you might find
shell programming simple to learn.
The BASH, TCSH, and Z shells described in Chapter 3 are types of shells.
You can have many instances of a particular kind of shell. A shell, by
definition, is an interpretive environment within which you execute
commands. You can have many environments running at the same time, of
either the same or different types of shells; you can have several shells
running at the same time that are of the BASH shell type, for example.
This chapter will cover the basics of creating a shell program using the
BASH and TCSH shells, the shells used on most Linux systems. You will
learn how to create your own scripts, define shell variables, and develop
user interfaces, as well as learn the more difficult task of combining

69

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

control structures to create complex programs. Tables throughout the
chapter list shell commands and operators, and numerous examples show
how they are implemented.
Usually, the instructions making up a shell program are entered into a
script file that can then be executed. You can even distribute your program
among several script files, one of which will contain instructions on how to
execute others. You can think of variables, expressions, and control
structures as tools you use to bring together several Linux commands into
one operation. In this sense, a shell program is a new and complex Linux
command that you have created.
The BASH shell has a flexible and powerful set of programming
commands that allows you to build complex scripts. It supports variables
that can be either local to the given shell or exported to other shells. You
can pass arguments from one script to another. The BASH shell has a
complete set of control structures, including loops and if statements as well
as case structures, all of which you’ll learn about as you read this book. All
shell commands interact easily with redirection and piping operations that
allow them to accept input from the standard input or send it to the
standard output. Unlike the Bourne shell, the first shell used for Unix,
BASH incorporates many of the features of the TCSH and Z shells.
Arithmetic operations in particular are easier to perform in BASH.
The TCSH shell, like the BASH shell, also has programming language
capabilities. You can define variables and assign values to them. You can
place variable definitions and Linux commands in a script file and then
execute that script. You can use loop and conditional control structures to
repeat Linux commands or make decisions on which commands you want
to execute. You can also place traps in your program to handle interrupts.
The TCSH shell differs from other shells in that its control structures
conform more to a programming-language format. For example, the test
condition for a TCSH shell's control structure is an expression that
evaluates to true or false, not to a Linux command. A TCSH shell
expression uses the same operators as those found in the C programming
language. You can perform a variety of assignment, arithmetic, relational,
and bitwise operations. The TCSH shell also allows you to declare numeric
variables that can easily be used in such operations.
Shell Variables
Within each shell, you can enter and execute commands. You can further
enhance the capabilities of a shell using shell variables. With a shell
variable, you can hold data that you can reference over and over again as
you execute different commands within a given shell. For example, you

70

LINUX OPERATING SYSTEM

NOTES

can define a shell variable to hold the name of complex filename. Then,
instead of retyping the filename in different commands, you can reference
it with the shell variable.
You define variables within a shell, and such variables are known as shell
variables. Some utilities, such as the Mail utility, have their own shells
with their own shell variables. You can also create your own shell using
what are called shell scripts. You have a user shell that becomes active as
soon as you log in. This is often referred to as the login shell. Special
system-level parameter variables are defined within this login shell. Shell
variables can also be used to define a shell’s environment.
Definition and Evaluation of Variables: =, $, set, unset
You define a variable in a shell when you first use the variable’s name. A
variable’s name may be any set of alphabetic characters, including the
underscore. The name may also include a number, but the number cannot
be the first character in the name. A name may not have any other type of
character, such as an exclamation point, an ampersand, or even a space.
Such symbols are reserved by the shell for its own use. Also, a variable
name may not include more than one word. The shell uses spaces on the
command line to distinguish different components of a command such as
options, arguments, and the name of the command.
You assign a value to a variable with the assignment operator (=). You
type the variable name, the assignment operator, and then the value
assigned. Do not place any spaces around the assignment operator. The
assignment operation poet = Virgil, for example, will fail. (The C shell has
a slightly different type of assignment operation.) You can assign any set
of characters to a variable. In the next example, the variable poet is
assigned the string Virgil:

$ poet=Virgil
 Once you have assigned a value to a variable, you can then use the
variable name to reference the value. Often you use the values of variables
as arguments for a command. You can reference the value of a variable
using the variable name preceded by the $ operator. The dollar sign is a
special operator that uses the variable name to reference a variable’s value,
in effect evaluating the variable. Evaluation retrieves a variable’s value,
usually a set of characters. This set of characters then replaces the variable
name on the command line. Wherever a $ is placed before the variable
name, the variable name is replaced with the value of the variable. In the
next example, the shell variable poet is evaluated and its contents, Virgil,
are then used as the argument for an echo command. The echo command
simply echoes or prints a set of characters to the screen.

71

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

$ echo $poet
Virgil
You must be careful to distinguish between the evaluation of a variable
and its name alone. If you leave out the $ operator before the variable
name, all you have is the variable name itself. In the next example, the $
operator is absent from the variable name. In this case, the echo command
has as its argument the word “poet”, and so prints out “poet”:
$ echo poet
poet
The contents of a variable are often used as command arguments. A
common command argument is a directory pathname. It can be tedious to
retype a directory path that is being used over and over again. If you assign
the directory pathname to a variable, you can simply use the evaluated
variable in its place. The directory path you assign to the variable is
retrieved when the variable is evaluated with the $ operator. The next
example assigns a directory pathname to a variable and then uses the
evaluated variable in a copy command. The evaluation of ldir (which is
$ldir) results in the pathname /home/chris/letters. The copy command
evaluates to cp myletter /home/chris/letters.
 $ ldir=/home/chris/letters
$ cp myletter $ldir
You can obtain a list of all the defined variables with the set command. If
you decide you do not want a certain variable, you can remove it with the
unset command. The unset command undefines a variable.
 Variable Values: Strings
The values that you assign to variables may consist of any set of
characters. These characters may be a character string that you explicitly
type in or the result obtained from executing a Linux command. In most
cases, you will need to quote your values using either single quotes double
quotes, backslashes, or back quotes. Single quotes, double quotes, and
backslashes allow you to quote strings in different ways. Back quotes have
the special function of executing a Linux command and using its results as
arguments on the command line.
Quoting Strings: Double Quotes, Single Quotes, and
Backslashes
Variable values can be made up of any characters. However, problems
occur when you want to include characters that are also used by the shell
as operators. Your shell has certain meta characters that it uses in
evaluating the command line. A space is used to parse arguments on the

72

LINUX OPERATING SYSTEM

NOTES

command line. The asterisk, question mark, and brackets are meta
characters used to generate lists of filenames. The period represents the
current directory. The dollar sign, $, is used to evaluate variables, and the
greater-than (>) and less-than (<) characters, are redirection operators. The
ampersand is used to execute background commands and the bar pipes
output. If you want to use any of these characters as part of the value of a
variable, you first need to quote them. Quoting a meta character on a
command line makes it just another character. It is not evaluated by the
shell.
You can use double quotes, single quotes, and backslashes to quote such
metacharacters. Double and single quotes allow you to quote several
metacharacters at a time. Any metacharacters within double or single
quotes are quoted.A backslash quotes the single character that follows it.

If you want to assign more than one word to a variable, you need to quote
the spaces separating the words. You can do so by enclosing all the words
within double quotes. You can think of this as creating a character string to
be assigned to the variable. Of course, any other metacharacters enclosed
within the double quotes are also quoted.
In the following first example, the double quotes enclose words separated
by spaces. Because the spaces are enclosed within double quotes, they are
treated as characters, not as delimiters used to parse command line
arguments. In the second example, double quotes also enclose a period,
treating it as just a character. In the third example, an asterisk is also
enclosed within the double quotes. The asterisk is considered just another
character in the string and is not evaluated.
$ notice="The meeting will be tomorrow"
 $ echo $notice
The meeting will be tomorrow
 $ message="The project is on time."
$ echo $message
The project is on time.
$ notice="You can get a list of files with ls *.c"
$ echo $notice
You can get a list of files with ls *.c
Double quotes, however, do not quote the dollar sign, the operator that
evaluates variables. A $ operator next to a variable name enclosed within
double quotes will still be evaluated, replacing the variable name with its
value. The value of the variable will then become part of the string, not the
variable name. There may be times when you want a variable within

73

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

quotes to be evaluated. In the next example, the double quotes are used so
that the winner's name will be included in the notice.
 $ winner=dylan
$ notice="The person who won is $winner"
$ echo $notice
 The person who won is dylan
On the other hand, there may be times when you do not want a variable
within quotes to be evaluated. In that case you have to use the single
quotes. Single quotes suppress any variable evaluation and treat the dollar
sign as just another character. In the next example, single quotes prevent
the evaluation of the winner variable.
 $ winner=Dylan
 $ result='The name is in the $winner variable'
 $ echo $result
The name is in the $winner variable
If, in this case, the double quotes were used instead, an unintended variable
evaluation would take place. In the next example, the characters "$winner"
are interpreted as a variable evaluation.
$ winner=dylan
$ result="The name is in the $winner variable"
$ echo $result
The name is in the dylan variable
You can always quote any metacharacter, including the $ operator, by
preceding it with a backslash. The use of the backslash is to quote ENTER
keys (newlines). The backslash is useful when you want to both evaluate
variables within a string and include the $ character. In the next example,
the backslash is placed before the $ to treat it as a dollar sign character: \$.
At the same time the variable $winner is evaluated because the double
quotes that are used do not quote the $ operator.
$ winner=Dylan
 $ result="$winner won \$100.00"
$ echo $result
dylan won $100.00
Quoting Commands: Single Quotes
There are, however, times when you may want to use single quotes around
a Linux command. Single quotes allow you to assign the written command
to a variable. If you do so, you can then use that variable name as another
name for the Linux command. Entering the variable name preceded by the
$ operator on the command line will execute the command. In the next
example, a shell variable is assigned the characters that make up a Linux

74

LINUX OPERATING SYSTEM

NOTES

command to list files, 'ls -F'. Notice the single quotes around the
command. When the shell variable is evaluated on the command line, the
Linux command it contains will become a command line argument, and it
will be executed by the shell.
$ lsf='ls -F'
 $ $lsf
 mydata /reports /letters
 $
 In effect you are creating another name for a command, like an alias.
Values from Linux Commands: Back Quotes
Although you can create variable values by typing in characters or
character strings, you can also obtain values from other Linux commands.
To assign the result of Linux command to a variable, you first need to
execute the command. If you place a Linux command within back quotes
on the command line, that command is first executed and its result
becomes an argument on the command line. In the case of assignments, the
result of a command can be assigned to a variable by placing the command
within back quotes to first execute it. The back quotes can be thought of as
an expression consisting of a command to be executed whose result is then
assigned to the variable. The characters making up the command itself are
not assigned. In the next example, the command ls *.c is executed and its
result is then assigned to the variable listc. ls *.c generates a list of all files
with a .c extension. This list of files is then assigned to the listc variable.
$ listc=`ls *.c`
$ echo $listc
 main.c prog.c lib.c
You need to keep in mind the difference between single quotes and back
quotes. Single quotes treat a Linux command as a set of characters. Back
quotes force execution of the Linux command. There may be times when
you accidentally enter single quotes when you mean to use back quotes. In
the following first example, the assignment for the lscc variable has single
quotes, not back quotes, placed around the ls *.c command. In this case, ls
*.c are just characters to be assigned to the variable lscc. In the second
example, back quotes are placed around the ls *.c command, forcing
evaluation of the command. A list of filenames ending in .c is generated
and assigned as the value of lscc.
$ lscc='ls *.c'
$ echo $lscc
 ls *.c
$ lscc=`ls *.c`

75

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

$ echo $lscc
main.c prog.c
Shell Scripts: User-Defined Commands
You can place shell commands within a file and then have the shell read
and execute the commands in the file. In this sense, the file functions as a
shell program, executing shell commands as if they were statements in a
program. A file that contains shell commands is called a shell script.
 You enter shell commands into a script file using a standard text editor
such as the Vi editor. The sh or. command used with the script’s filename
will read the script file and execute the commands. In the next example,
the text file called lsc contains an ls command that displays only files with
the extension .c:
lsc
ls *.c
A run of the lsc script is shown here:
$ sh lsc
 main.c calc.c
$. lsc
main.c calc.c
Executing Scripts
You can dispense with the sh and. commands by setting the executable
permission of a script file. When the script file is first created by your text
editor, it is given only read and write permission. The chmod command
with the +x option will give the script file executable permission. Once it is
executable, entering the name of the script file at the shell prompt and
pressing ENTER will execute the script file and the shell commands in it.
In effect, the script’s filename becomes a new shell command. In this way,
you can use shell scripts to design and create your own Linux commands.
You need to set the permission only once. In the next example, the lsc
file’s executable permission for the owner is set to on. Then the lsc shell
script is directly executed like any Linux command.
$ chmod u+x lsc
$ lsc
 main.c calc.c
You may have to specify that the script you are using is in your current
working directory. You do this by prefixing the script name with a period
and slash combination, ./, as in ./lsc. The period is a special character
representing the name of your current working directory. The slash is a
directory pathname separator. The following example shows how to
execute the lsc script:

76

LINUX OPERATING SYSTEM

NOTES

$./lsc
main.c calc.c
Script Arguments
Just as any Linux command can take arguments, so also can a shell script.
Arguments on the command line are referenced sequentially starting with
1. An argument is referenced using the $ operator and the number of its
position. The first argument is referenced with $1, the second with $2, and
so on. In the next example, the lsext script prints out files with a specified
extension. The first argument is the extension. The script is then executed
with the argument c (of course, the executable permission must have been
set).
lsext ls *.$1
A run of the lsext script with an argument is shown here:
$ lsext c
main.c calc.c
In the next example, the commands to print out a file with line numbers
have been placed in an executable file called lpnum, which takes a
filename as its argument. The cat command with the -n option first outputs
the contents of the file with line numbers. Then this output is piped into the
lpr command, which prints it. The command to print out the line numbers
is executed in the background.
lpnum
cat -n $1 | lpr &
A run of the lpnum script with an argument is shown here:
$ lpnum mydata
You may need to reference more than one argument at a time. The number
of arguments used may vary. In lpnum, you may want to print out three
files at one time and five files at some other time. The $ operator with the
asterisk, $*, references all the arguments on the command line. Using $*
enables you to create scripts that take a varying number of arguments. In
the next example, lpnum is rewritten using $* so that it can take a different
number of arguments each time you use it:
lpnum
cat -n $* | lpr &
A run of the lpnum script with multiple arguments is shown here:
$ lpnum mydata preface

77

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

TCSH Argument Array: argv
The TCSH/C shell uses a different set of argument variables to reference
arguments. These are very similar to those used in the C programming
language. When a TCSH shell script is invoked, all the words on the
command line are parsed and placed in elements of an array called argv.
The argv[0] array will hold the name of the shell script, and beginning
with argv[1], each element will hold an argument entered on the command
line. In the case of shell scripts, argv[0] will always contain the name of
the shell script. As with any array element, you can access the contents of
an argument array element by preceding it with a $ operator. For example,
$argv[1] accesses the contents of the first element in the argv array, the
first argument. In the greetarg script, a greeting is passed as the first
argument on the command line. This first argument is accessed with
$argv[1].
Greetarg
echo "The greeting you entered was: $argv[1]"
A run of the greetarg script follows:
% greetarg Hello
The greeting you entered was: Hello
Each word is parsed on the command line unless it’s quoted. In the next
example, the greetarg script is invoked with an unquoted string and then a
quoted string. Notice that the quoted string, “Hello, how are you”, is
treated as one argument.
% greetarg Hello, how are you
The greeting you entered was: Hello,
% greetarg "Hello, how are you"
The greeting you entered was: Hello, how are you
If more than one argument is entered, the arguments can each be
referenced with a corresponding element in the argv array. In the next
example, the myargs script prints out four arguments. Four arguments are
then entered on the command line.
Myargs
 #
echo "The first argument is: $argv[1]"
echo "The second argument is: $argv[2]"
echo "The third argument is: $argv[3]"
echo "The fourth argument is: $argv[4]"
The run of the myargs script is shown here:
% myargs Hello Hi yo "How are you"
The first argument is: Hello

78

LINUX OPERATING SYSTEM

NOTES

The second argument is: Hi
The third argument is: yo
The fourth argument is: How are you

Environment Variables and Subshells: export and
setenv
When you log in to your account, your Linux system generates your user
shell. Within this shell, you can issue commands and declare variables.
You can also create and execute shell scripts. However, when you execute
a shell script, the system generates a subshell. You then have two shells,
the one you logged in to and the one generated for the script. Within the
script shell you can execute another shell script, which will then have its
own shell. When a script has finished execution, its shell terminates and
you enter back to the shell from which it was executed. In this sense, you
can have many shells, each nested within the other.
Variables that you define within a shell are local to it. If you define a
variable in a shell script, then, when the script is run, the variable is
defined with that script's shell and is local to it. No other shell can
reference it. In a sense, the variable is hidden within its shell.
To illustrate this situation more clearly, the next example will use two
scripts, one of which is called from within the other. When the first script
executes, it generates its own shell. From within this shell, another script is
executed which, in turn, generates its own shell. In the next example, the
user first executes the dispfirst script, which displays a first name. When
the dispfirst script executes, it generates its own shell and then, within that
shell, it defines the firstname variable. After it displays the contents of
firstname, the script executes another script: displast. When displast
executes, it generates its own shell. It defines the lastname variable within
its shell and then displays the contents of lastname. It then tries to
reference firstname and display its contents. It cannot do so because
firstname is local to the dispfirst shell and cannot be referenced outside it.
An error message is displayed indicating that for the displast shell,
firstname is an undefined variable.
dispfirst firstname="Charles"
echo "First name is $firstname"
displast
displast lastname="Dickens"
echo "Last name is $lastname"

79

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

echo "$firstname $lastname"
The run of the dispfirst script is shown here:
$ dispfirst
First name is Charles
Last name is Dickens
Dickens
sh: firstname: not found
$
dispfile
myfile="List"
echo "Displaying $myfile"
pr -t -n $myfile
printfile
printfile
myfile="List"
echo "Printing $myfile"
lp $myfile &
The run of the dispfile script is shown here:
$ dispfile
Displaying List
1 screen
2 modem
3 paper
Printing List
 $
If you want the same value of a variable used both in a script's shell and a
subshell, you can simply define the variable twice, once in each script, and
assign it the same value. In the previous example, there is a myfile variable
defined in dispfile and in printfile. The user executes the b script, which
first displays the list file with line numbers. When the dispfile script
executes, it generates its own shell and then, within that shell, it defines the
myfile variable. After it displays the contents of the file, the script then
executes another script, printfile. When printfile executes, it generates its
own shell. It defines its own myfile variable within its shell and then sends
a file to the printer.
What if you want to define a variable in one shell and have its value
referenced in any subshell? For example, what if you want to define the
myfile variable in the dispfile script and have its value, List, referenced
from within the printfile script, rather than explicitly defining another
variable in printfile? Since variables are local to the shell they are defined

80

LINUX OPERATING SYSTEM

NOTES

in, there is no way you can do this with ordinary variables. However, there
is a type of variable called an environment variable that allows its value to
be referenced by any subshell. Environment variables constitute an
environment for the shell and any subshell it generates, no matter how
deeply nested.
You can define environment variables in the three major types of shells:
Bourne, Korn, and C. However, the strategy used to implement
environmental variables in the Bourne and Korn shells is very different
from that of the C shell. In the Bourne and Korn shells, environmental
variables are exported. That is to say, a copy of an environmental variable
is made in each subshell. In a sense, if the myfile variable is exported, a
copy is automatically defined in each subshell for you. In the C shell, on
the other hand, an environmental variable is defined only once and can be
directly referenced by any subshell.
Shell Environment Variables
In the Bourne, BASH, and Korn shells, an environment variable can be
thought of as a regular variable with added capabilities. To make an
environment variable, you apply the export command to a variable you
have already defined. The export command instructs the system to define
a copy of that variable for each new shell generated. Each new shell will
have its own copy of the environment variable. This process is called
exporting variables.
In the next example, the variable myfile is defined in the dispfile script. It
is then turned into an environment variable using the export command.
The myfile variable will consequently be exported to any subshell, such as
that generated when printfile is executed.
dispfile
myfile="List"
export myfile
echo "Displaying $myfile"
pr -t -n $myfile
printfile
printfile
echo "Printing $myfile"
lp $myfile &
The run of the dispfile script is shown here:
$ dispfile
Displaying List
1 screen
2 modem

81

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

3 paper
Printing List
$
When printfile is executed it will be given its own copy of myfile and can
reference that copy within its own shell. You no longer need to explicitly
define another myfile variable in printfile. It is a mistake to think of
exported environment variables as global variables. A new shell can never
reference a variable outside of itself. Instead, a copy of the variable with its
value is generated for the new shell. You can think of exported variables as
exporting their values to a shell, not themselves. For those familiar with
programming structures, exported variables can be thought of as a form of
call-by-value.
TCSH and C Shell Environment Variables
In the TCSH and C shells, an environment variable is defined using a
separate definition command, setenv. In this respect, an environment
variable is really a very different type of variable from that of a regular
local variable. A C shell environment variable operates more like a global
variable. It can be directly referenced by any subshell. This differs from
the Bourne, BASH, and Korn shells in which only a copy of the
environment variable is passed down and used by the subshell.
To define an environment variable you first enter the setenv command
followed by the variable name and then the value. There is no assignment
operator. In the next example, the myfile environment variable is defined
and assigned the value List.
% setenv myfile list
dispfile
setenv myfile "List"
echo "Displaying $myfile"
cat -n $myfile
printfile
printfile
echo "Printing $myfile"
 lpr $myfile &
The run of the dispfile script is shown here:
 % dispfile
 Displaying List
 1 screen
 2 modem
 3 paper
 Printing List

82

LINUX OPERATING SYSTEM

NOTES

 $
In the previous example, the variable myfile is defined as an environment
variable in the dispfile script. Notice the use of the setenv command
instead of set. The myfile variable can now be referenced in any subshell,
such as that generated when printfile is executed.
When printfile is executed, it will be able to directly access the myfile
variable defined in the shell of the dispfile script.

Control Structures
You can control the execution of Linux commands in a shell script with
control structures. Control structures allow you to repeat commands and to
select certain commands over others. A control structure consists of two
major components: a test and commands. If the test is successful, then the
commands are executed. In this way, you can use control structures to
make decisions as to whether commands should be executed.
There are two different kinds of control structures: loops and conditions. A
loop repeats commands, whereas a condition executes a command when
certain conditions are met. The BASH shell has three loop control
structures: while, for, and for-in. There are two condition structures: if and
case. The control structures have as their test the execution of a Linux
command. All Linux commands return an exit status after they have
finished executing. If a command is successful, its exit status will be 0. If
the command fails for any reason, its exit status will be a positive value
referencing the type of failure that occurred. The control structures check
to see if the exit status of a Linux command is 0 or some other value. In the
case of the if and while structures, if the exit status is a 0 value, then the
command was successful and the structure continues.
Test Operations
With the test command, you can compare integers, compare strings, and
even perform logical operations. The command consists of the keyword
test followed by the values being compared, separated by an option that
specifies what kind of comparison is taking place. The option can be
thought of as the operator, but it is written, like other options, with a minus
sign and letter codes. For example, -eq is the option that represents the
equality comparison. However, there are two string operations that actually
use an operator instead of an option. When you compare two strings for
equality, you use the equal sign (=). For inequality you use !=. Table 4-1

83

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

lists some of the commonly used options and operators used by test. The
syntax for the test command is shown here:
 test value -option value
 test string = string
In the next example, the user compares two integer values to see if they are
equal. In this case, you need to use the equality option, -eq. The exit status
of the test command is examined to find out the result of the test operation.
The shell special variable $? holds the exit status of the most recently
executed Linux command.
$ num=5
$ test $num -eq 10
 $ echo $?
 1
Instead of using the keyword test for the test command, you can use
enclosing brackets. The command test $greeting = "hi" can be written as
$ [$greeting = "hi"]
Similarly, the test command test $num -eq 10 can be written as
$ [$num -eq 10]

The brackets themselves must be surrounded by white space: a space,
TAB, or ENTER. Without the spaces, they are invalid.
Conditional Control Structures

84

LINUX OPERATING SYSTEM

NOTES

The BASH shell has a set of conditional control structures that allow you
to choose what Linux commands to execute. Many of these are similar to
conditional control structures found in programming languages, but there
are some differences. The if condition tests the success of a Linux
command, not an expression. Furthermore, the end of an if-then command
must be indicated with the keyword fi, and the end of a case command is
indicated with the keyword esac.
The if structure places a condition on commands. That condition is the exit
status of a specific Linux command. If a command is successful, returning
an exit status of 0, then the commands within the if structure are executed.
If the exit status is anything other than 0,

85

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

then the command has failed and the commands within the if structure are
not executed. The if command begins with the keyword if and is followed
by a Linux command whose exit condition will be evaluated. The keyword
fi ends the command. The elsels script in the next example executes the ls
command to list files with two different possible options, either by size or
with all file information. If the user enters an s, files are listed by size;
otherwise, all file information is listed.
elsels
echo Enter s to list file by sizes
echo otherwise all file information is listed.
echo -n "Please enter option: "
read choice
if ["$choice" = s]
then
ls -s
else
ls –l
fi
echo Good-bye
A run of the program follows:
$ elsels
Enter s to list file sizes,
otherwise all file information is listed.
Please enter option: s
total 2
1 monday 2 today
$
Loop Control Structures
The while loop repeats commands. A while loop begins with the keyword
while and is followed by a Linux command. The keyword do follows on

86

LINUX OPERATING SYSTEM

NOTES

the next line. The end of the loop is specified by the keyword done. The
Linux command used in while structures is often a test command indicated
by enclosing brackets.
The for-in structure is designed to reference a list of values sequentially. It
takes two operands: a variable and a list of values. The values in the list are
assigned one by one to the variable in the for-in structure. Like the while
command, the for-in structure is a loop. Each time through the loop, the
next value in the list is assigned to the variable. When the end of the list is
reached, the loop stops. Like the while loop, the body of a for-in loop
begins with the keyword do and ends with the keyword done. The
cbackup script makes a backup of each file and places it in a directory
called sourcebak. Notice the use of the * special character to generate a
list of all filenames with a .c extension.
cbackup
for backfile in *.c
do
cp $backfile sourcebak/$backfile
echo $backfile
done A run of the program follows:
$ cbackup
io.c
lib.c
main.c
$
The for structure without a specified list of values takes as its list of values
the command line arguments. The arguments specified on the command
line when the shell file is invoked become a list of values referenced by the
for command. The variable used in the for command is set automatically
to each argument value in sequence. The first time through the loop, the
variable is set to the value of the first argument. The second time, it is set
to the value of the second argument.
TCSH/C Shell Control Structures
As in other shells, the TCSH shell has a set of control structures that let
you control the execution of commands in a script. There are loop and
conditional control structures with which you can repeat Linux commands
or make decisions about which commands you want to execute. The while
and if control structures are more general purpose control structures,
performing iterations and making decisions using a variety of different
tests. The switch and foreach control structures are more specialized
operations. The switch structure is a restricted form of the if condition that

87

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

checks to see if a value is equal to one of a set of possible values. The
foreach structure is a limited type of loop that runs through a list of values,
assigning a new value to a variable with each iteration.
The TCSH shell differs from other shells in that its control structures
conform more to a programming-language format. The test condition for a
TCSH shell control structure is an expression that evaluates to true or false,
not a Linux command. One key difference between BASH shell and TCSH
shell control structures is that TCSH shell structures cannot redirect or pipe
their output. They are strictly control structures, controlling the execution
of commands.
Test Expressions
The if and while control structures use an expression as their test. A true
test is any expression that results in a nonzero value. A false test is any
expression that results in a 0 value. In the TCSH shell, relational and
equality expressions can be easily used as test expressions, because they
result in 1 if true and 0 if false. There are many possible operators that you
can use in an expression.The test expression can also be arithmetic or a
string comparison, but strings can only be compared for equality or
inequality.
Unlike the BASH shell, you must enclose the TCSH shell if and while test
expressions within parentheses. The next example shows a simple test
expression testing to see if two strings are equal.
if ($greeting == "hi") then
echo Informal Greeting
endif
The TCSH shell has a separate set of operators for testing strings against
other strings or against regular expressions. The == and != operators test
for the equality and inequality of strings. The =~ and !~ operators test a
string against a regular expression and test to see if a pattern match is
successful. The regular expression can contain any of the shell special
characters. In the next example, any value of greeting that begins with an
upper or lowercase h will match the regular expression [Hh]*.
 if ($greeting =~ [Hh]*) then
echo Informal Greeting
endif
Like the BASH shell, the TCSH shell has several special operators that test
the status of files. Many of these operators are the same. In the next
example, the if command tests to see if the file mydata is readable.
 if (-r mydata) then
 echo Informal Greeting

88

LINUX OPERATING SYSTEM

NOTES

endif
TCSH Shell Conditions: if-then, if-then-else, switch
The TCSH shell has a set of conditional control structures with which you
make decisions about what Linux commands to execute. Many of these
conditional control structures are similar to conditional control structures
found in the BASH shell. There are, however, some key differences. The
TCSH shell if structure ends with the keyword endif. The switch structure
uses the keyword case differently. It ends with the keyword endsw and
uses the

Keyword breaksw instead of two semicolons.Furthermore, there are two if
control.
structures: a simple version that executes only one command and a more
complex version that can execute several commands as well as alternative
commands. The simple version of if consists of the keyword if followed by
a test and a single Linux command. The complex version ends with the
keyword endif.

89

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

The if-then Structure
The if-then structure places a condition on several Linux commands. That
condition is an expression. If the expression results in a value other than 0,
the expression is true and the commands within the if structure are
executed. If the expression results in a 0 value, the expression is false and
the commands within the if structure are not executed.
 The if-then structure begins with the keyword if and is followed by an
expression enclosed in parentheses. The keyword then follows the
expression. You can then specify any number of Linux commands on the
following lines. The keyword endif ends the if command. Notice that,
whereas in the BASH shell the then keyword is on a line of its own, in the
TCSH shell, then is on the same line as the test expression. The syntax for
the if-then structure is shown here:
 if (Expression) then
Commands
endif
The ifls script shown next allows you to list files by size. If you enter an s
at the prompt, each file in the current directory is listed, followed by the
number of blocks it uses. If you enter anything else at the prompt, the if
test fails and the script does nothing.
Ifls

echo -n "Please enter option: "
set option = $<
if ($option == "s")
then
echo Listing files by size
ls –s
endif

90

LINUX OPERATING SYSTEM

NOTES

A run of the ifls script is shown here:
% ifls
Please enter option: s
Listing files by size
total 2
1 monday 2 today
Often, you need to choose between two alternatives based on whether an
expression is true. The else keyword allows an if structure to choose
between two alternative commands. If the expression is true, those
commands immediately following the test expression are executed. If the
expression is false, those commands following the else keyword are
executed. The syntax for the if-else command is shown here:
if (expression) then
 commands
else
commands
endif
The elsels script in the next example executes the ls command to list files
with two different possible options: by size or with all file information. If
the user enters an s, files are listed by size; otherwise, all file information is
listed.
elsels
 #
echo Enter s to list file sizes.
echo otherwise all file information is listed.
echo -n "Please enter option : "
set option = $<
if ($option == "s") then
 ls -s
else
 ls –l
 endif
echo Goodbye
A run of the elsels script follows:
 > elsels
Enter s to list file sizes,
otherwise all file information is listed.
Please enter option: s
total 2
1 monday 2 today

91

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

Good-bye
The switch Structure
The switch structure chooses among several possible alternative
commands. It is similar to the BASH shell’s case structure in that the
choice is made by comparing a string with several possible patterns. Each
possible pattern is associated with a set of commands. If a match is found,
the associated commands are performed.
The switch structure begins with the keyword switch followed by a test
string within parentheses. The string is often derived from a variable
evaluation. A set of patterns then follows—each pattern preceded by the
keyword case and terminated with a colon. Commands associated with this
choice are listed after the colon. The commands are terminated with the
keyword breaksw. After all the listed patterns, the keyword endsw ends
the switch structure. The syntax for the switch structure is shown here:
switch (test-string)
case pattern:
commands
breaksw
case pattern:
commands
breaksw
default:
commands
breaksw
endsw
TCSH Shell Loops: while, foreach, repeat
The TCSH shell has a set of loop control structures that allow you to repeat
Linux commands: while, foreach, and repeat.
The while structure operates in a way similar to corresponding structures
found in programming languages. Like the TCSH shell's if structure, the
while structure tests the result of an expression. The TCSH shell's foreach
structure, like the for and for-in structures in the BASH shell, does not
perform any tests. It simply progresses through a list of values, assigning
each value in turn to a specified variable. In this respect, the foreach
structure is very different from corresponding structures found in
programming languages. The repeat structure is a simple and limited
control structure. It repeats one command a specified number of times. It
has no test expression, and it cannot repeat more than one command.

92

LINUX OPERATING SYSTEM

NOTES

The while Structure
The while loop repeats commands. A while loop begins with the keyword
while and is followed by an expression enclosed in parentheses. The end of
the loop is specified by the keyword end. The syntax for the while loop is
shown here:
while (expression)
commands
 end
The while structure can easily be combined with a switch structure to
drive a menu.
 The foreach Structure
The foreach structure is designed to sequentially reference a list of values.
It is very similar to the BASH shell’s for-in structure. The foreach
structure takes two operands: a variable and a list of values enclosed in
parentheses. Each value in the list is assigned to the variable in the foreach
structure. Like the while structure, the foreach structure is a loop. Each
time through the loop, the next value in the list is assigned to the variable.
When the end of the list is reached, the loop stops. Like the while loop, the
body of a foreach loop ends with the keyword end. The syntax for the
foreach loop is shown here:
foreach variable (list of values)
commands
 end
In the mylist script, in the next example, the script simply outputs a list of
each item with today’s date. The list of items makes up the list of values
read by the foreach loop. Each item is consecutively assigned to the
variable grocery.
 mylist

set tdate=`date '+%D'`
 foreach grocery (milk cookies apples cheese)

93

THE SHELL SCRIPTS
AND PROGRAMMING

NOTES

 echo "$grocery $tdate"
end $
mylist
milk 12/23/96
cookies 12/23/96
apples 12/23/96
cheese 12/23/96
$
The foreach loop is useful for managing files. In the foreach structure,
you can use shell special characters in a pattern to generate a list of
filenames for use as your list of values. This generated list of filenames
then becomes the list referenced by the foreach structure. An asterisk by
itself generates a list of all files and directories. *.c lists files with the .c
extension. These are usually C source code files. The next example makes
a backup of each file and places the backup in a directory called
sourcebak. The pattern *.c generates a list of filenames that the foreach
structure can operate on.
cbackup

foreach backfile (*.c)
cp $backfile sourcebak/$backfile
 echo $backfile
end
 % cbackup
io.c
lib.c
main.c
The foreach structure without a specified list of values takes as its list of
values the command line arguments. The arguments specified on the
command line when the shell file was invoked become a list of values
referenced by the foreach structure. The variable used in the foreach
structure is set automatically to each argument value in sequence. The first
time through the loop, the variable is set to the value of the first argument.
The second time, it is set to the value of the second argument, and so on.
In the mylistarg script in the next example, there is no list of values
specified in the foreach loop. Instead, the foreach loop consecutively
reads the values of command line arguments into the grocery variable.
When all the arguments have been read, the loop ends.
Mylistarg
 #

94

LINUX OPERATING SYSTEM

NOTES

set tdate=`date '+%D'`
foreach grocery ($argv[*])
 echo "$grocery $tdate"
 end
$ mylistarg milk cookies apples cheese
milk 12/23/96
 cookies 12/23/96
apples 12/23/96
 cheese 12/23/96
 $
Review & Self Assessment Question:
Q1- What is Shell Script ?
Q2- What do you mean by scripts arguments?
Q3-What do you mean by TCSH argument array ?
Q4-Explain Test Comman briefly ?
Q5-What is switch structure ?

Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

95

SHELL
CONFIGURATION

NOTES

UNIT- 5 SHELL
CONFIGURATION

Contents
 Introduction
 Shell initialization and Configuration files
 Aliases
 Aliasing Commands and argument
 Shell Parameter Variable
 Command Location
 Exporting Variables
 System shell Profile Scripts
 Noclobber
 Review & Self Assessment Question
 Further Readings

Introduction
 Four different major shells are commonly used on Linux
systems: the Bourne Again shell (BASH), the AT&T Korn shell, the TCSH
shell, and the Z shell. The BASH shell is an advanced version of the
Bourne shell, which includes most of the advanced features developed for
the Korn shell and the C shell. TCSH is an enhanced version of the C shell,
originally developed for BSD versions of Unix. The AT&T Unix Korn
shell is open source. The Z shell is an enhanced version of the Korn shell.
Although their Unix counterparts differ greatly, the Linux shells share
many of the same features. In Unix, the Bourne shell lacks many
capabilities found in the other Unix shells. In Linux, however, the BASH
shell incorporates all the advanced features of the Korn shell and C shell,
as well as the TCSH shell. All four shells are available for your use,
though the BASH shell is the default.
 The BASH shell is the default shell for most Linux
distributions. If you are logging in to a command line interface, you will be
placed in the default shell automatically and given a shell prompt at which
to enter your commands. The shell prompt for the BASH shell is a dollar
sign ($). In a GUI interface, such as GNOME or KDE, you can open a
terminal window that will display a command line interface with the
prompt for the default shell (BASH). Though you log in to your default
shell or display it automatically in a terminal window, you can change to
another shell by entering its name. tcsh invokes the TCSH shell, bash the

96

LINUX OPERATING SYSTEM

NOTES

BASH shell, ksh the Korn shell, and zsh the Z shell. You can leave a shell
by pressing CTRL-D or using the exit command. You only need one type
of shell to do your work. Table 5-1 shows the different commands you can
use to invoke different shells. Some shells have added links you can use
the invoke the same shell, like sh and bsh, which link to and invoke the
bash command for the BASH shell.
This chapter describes common features of the BASH shell, such as
aliases, as well as how to configure the shell to your own needs using shell
variables and initialization files. The other shells share many of the same
features and use similar variables and initialization files.
Though the basic shell features and configurations are shown here, you
should consult the respective online manuals and FAQs for each shell for
more detailed examples and explanations.

Shell Initialization and Configuration Files
Each type of shell has its own set of initialization and configuration files.
The BASH shell configuration files were discussed previously. The TCSH
shell uses .login, .tcshrc, and .logout files in place of .bash_profile, .bashrc,
and .bash_logout. Instead of .bash_profile, some distributions use the name
.profile. The Z shell has several initialization files: .zshenv, .zlogin,
.zprofile, .zschrc, and .zlogout.Check the Man pages for each shell to see
how they are usually configured. When you install a shell, default versions
of these files are automatically placed in the users’ home directories.
Except for the TCSH shell, all shells use much the same syntax for
variable definitions and assigning values.
Configuration Directories and Files
Applications often install configuration files in a user’s home directory that
contain specific configuration information, which tailors the application to
the needs of that particular user. This may take the form of a single
configuration file that begins with a period, or a directory that contains
several configuration files. The directory name will also begin with a
period. For example, Mozilla installs a directory called .mozilla in the
user’s home directory that contains configuration files. On the other hand,
many mail application uses a single file called .mailrc to hold alias and

97

SHELL
CONFIGURATION

NOTES

feature settings set up by the user, though others like Evolution also have
their own, .evolution. Most single configuration files end in the letters rc.
FTP uses a file called .netrc. Most newsreaders use a file called .newsrc.
Entries in configuration files are usually set by the application, though you
can usually make entries directly by editing the file. Applications have
their own set of special variables to which you can define and assign
values. You can list the configuration files in your home directory with the
ls -a command.

Aliases
You use the alias command to create another name for a command. The
alias command operates like a macro that expands to the command it
represents. The alias does not literally replace the name of the command; it
simply gives another name to that command. An alias command begins
with the keyword alias and the new name for the command, followed by
an equal sign and the command the alias will reference.
In the next example, list becomes another name for the ls command:
$ alias list=ls
$ ls
 mydata today
$ list
 mydata today

98

LINUX OPERATING SYSTEM

NOTES

 $

Aliasing Commands and Options
You can also use an alias to substitute for a command and its option, but
you need to enclose both the command and the option within single quotes.
Any command you alias that contains spaces must be enclosed in single
quotes as well. In the next example, the alias lss references the ls command
with its -s option, and the alias lsa references the ls command with the -F
option. The ls command with the -s option lists files and their sizes in
blocks, and ls with the -F option places a slash after directory names.
Notice how single quotes enclose the command and its option.
$ alias lss='ls -s'
$ lss
mydata 14 today 6 reports 1
$ alias lsa='ls -F'
$ lsa
mydata today reports/
$
Aliases are helpful for simplifying complex operations. In the next
example, listlong becomes another name for the ls command with the -l
option (the long format that lists all file information), as well as the -h
option for using a human-readable format for file sizes. Be sure to encase
the command and its arguments within single quotes so that they are taken
as one argument and not parsed by the shell.
$ alias listlong='ls -lh'
$ listlong
-rw-r--r-- 1 root root 51K Sep 18 2003 mydata
-rw-r--r-- 1 root root 16K Sep 27 2003 today
Aliasing Commands and Arguments
You may often use an alias to include a command name with an argument.
If you execute a command that has an argument with a complex
combination of special characters on a regular basis, you may want to alias
it. For example, suppose you often list just your source code and object
code files—those files ending in either a .c or .o. You would need to use as
an argument for ls a combination of special characters such as *.[co].
Instead, you can alias ls with the .[co] argument, giving it a simple name.
In the next example, the user creates an alias called lsc for the command
ls.[co]:
 $ alias lsc='ls *.[co]'

99

SHELL
CONFIGURATION

NOTES

 $ lsc
main.c main.o lib.c lib.o

Aliasing Commands
You can also use the name of a command as an alias. This can be helpful
in cases in which you should use a command only with a specific option.
In the case of the rm, cp, and mv commands, the -i option should always
be used to ensure an existing file is not overwritten. Instead of always
being careful to use the -i option each time you use one of these
commands; you can alias the command name to include the option. In the
next example, the rm, cp, and mv commands have been aliased to include
the -i option:
$ alias rm='rm -i'
$ alias mv='mv -i'
$ alias cp='cp -i'
The alias command by itself provides a list of all aliases that have been
defined, showing the commands they represent. You can remove an alias
by using the unalias command. In the next example, the user lists the
current aliases and then removes the lsa alias:
$ alias
lsa=ls -F
list=ls
rm=rm -i
$ unalias lsa
Controlling Shell Operations
The BASH shell has several features that enable you to control the way
different shell operations work. For example, setting the noclobber feature
prevents redirection from overwriting files. You can turn these features on
and off like a toggle, using the set command. The set command takes two
arguments: an option specifying on or off and the name of the feature. To
set a feature on, you use the -o option, and to set it off, you use the +o
option. Here is the basic form:
$ set -o feature turn the feature on
$ set +o feature turn the feature off
Three of the most common features are ignoreeof, noclobber, and noglob.
Table 5-3 lists these different features, as well as the set command. Setting
ignoreeof enables a feature that prevents you from logging out of the user
shell with CTRL-D. CTRL-D is not only

100

LINUX OPERATING SYSTEM

NOTES

used to log out of the user shell, but also to end user input entered directly
into the standard input. CTRL-D is used often for the Mail program or for
utilities such as cat. You can easily enter an extra CTRL-D in such
circumstances and accidentally log yourself out. The ignoreeof feature
prevents such accidental logouts. In the next example, the ignoreeof
feature is turned on using the set command with the -o option. The user
can then log out only by entering the logout command.
$ set -o ignoreeof
$ CTRL-D
Use exit to logout
$
Environment Variables and Subshells: export
When you log in to your account, Linux generates your user shell. Within
this shell, you can issue commands and declare variables. You can also
create and execute shell scripts. When you execute a shell script, however,
the system generates a subshell. You then have two shells, the one you
logged in to and the one generated for the script. Within the script shell,
you can execute another shell script, which then has its own shell. When a
script has finished execution, its shell terminates and you return to the shell
from which it was executed. In this sense, you can have many shells, each
nested within the other. Variables you define within a shell are local to it.
If you define a variable in a shell script, then, when the script is run, the
variable is defined with that script’s shell and is local to it. No other shell
can reference that variable. In a sense, the variable is hidden within its
shell.
You can define environment variables in all types of shells, including the
BASH shell, the Z shell, and the TCSH shell. The strategy used to
implement environment variables in the BASH shell, however, is different
from that of the TCSH shell. In the BASH shell, environment variables are
exported. That is to say, a copy of an environment variable is made in each
subshell. For example, if the EDITOR variable is exported, a copy is
automatically defined in each subshell for you. In the TCSH shell, on the

101

SHELL
CONFIGURATION

NOTES

other hand, an environment variable is defined only once and can be
directly referenced by any subshell.
In the BASH shell, an environment variable can be thought of as a regular
variable with added capabilities. To make an environment variable, you
apply the export command to a variable you have already defined. The
export command instructs the system to define a copy of that variable for
each new shell generated. Each new shell will have its own copy of the
environment variable. This process is called exporting variables. To think
of exported environment variables as global variables is a mistake. A new
shell can never reference a variable outside of itself. Instead, a copy of the
variable with its value is generated for the new shell.
Configuring Your Shell with Shell Parameters
When you log in, Linux will set certain parameters for your login shell.
These parameters can take the form of variables or features. See the earlier
section “Controlling Shell Operations” for a description of how to set
features. Linux reserves a predefined set of variables for shell and system
use. These are assigned system values, in effect setting parameters. Linux
sets up parameter shell variables you can use to configure your user shell.
Many of these parameter shell variables are defined by the system when
you log in. Some parameter shell variables are set by the shell
automatically, and others are set by initialization scripts, described later.
Certain shell variables are set directly by the shell, and others are simply
used by it. Many of these other variables are application specific, used for
such tasks as mail, history, or editing. Functionally, it may be better to
think of these as system-level variables, as they are used to configure your
entire system, setting values such as the location of executable commands
on your system, or the number of history commands allowable. See Table
5-4 for a list of those shell variables set by the shell for shell-specific tasks;
Table 5-5 lists those used by the shell for supporting other applications.
A reserved set of keywords is used for the names of these system variables.
You should not use these keywords as the names of any of your own
variable names. The system shell variables are all specified in uppercase
letters, making them easy to identify. Shell feature variables are in
lowercase letters. For example, the keyword HOME is used by the system
to define the HOME variable. HOME is a special environment variable
that holds the pathname of the user’s home directory. On the other hand,
the keyword noclobber is used to set the noclobber feature on or off.
Shell Parameter Variables
Many of the shell parameter variables automatically defined and assigned
initial values by the system when you log in can be changed, if you wish.

102

LINUX OPERATING SYSTEM

NOTES

However, some parameter variables exist whose values should not be
changed. For example, the HOME variable holds the

103

SHELL
CONFIGURATION

NOTES

pathname for your home directory. Commands such as cd reference the
pathname in the HOME shell variable to locate your home directory.
Some of the more common of these parameter variables are described in
this section. Other parameter variables are defined by the system and
given an initial value that you are free to change. To do this, you redefine
them and assign a new value. For example, the PATH variable is defined
by the system and given an initial value; it contains the pathnames of
directories where commands are located. Whenever you execute a
command, the shell searches for it in these directories. You can add a new
directory to be searched by redefining the PATH variable yourself, so that
it will include the new directory’s pathname. Still other parameter
variables exist that the system does not define. These are usually optional
features, such as the EXINIT variable that enables you to set options for
the Vi editor. Each time you log in, you must define and assign a value to
such variables. Some of the more common parameter variables are
SHELL, PATH, PS1, PS2, and MAIL. The SHELL variable holds the
pathname of the program for the type of shell you log in to. The PATH
variable lists the different directories to be searched for a Linux
command. The PS1 and PS2 variables hold the prompt symbols. The
MAIL variable holds the pathname of your mailbox file. You can modify
the values for any of them to customize your shell.
Using Initialization Files
You can automatically define parameter variables using special shell
scripts called initialization files. An initialization file is a specially named
shell script executed whenever you enter a certain shell. You can edit the
initialization file and place in it definitions and assignments for parameter
variables. When you enter the shell, the initialization file will execute
these definitions and assignments, effectively initializing parameter
variables with your own values. For example, the BASH shell’s
.bash_profile file is an initialization file executed every time you log in. It
contains definitions and assignments of parameter variables. However, the

104

LINUX OPERATING SYSTEM

NOTES

.bash_profile file is basically only a shell script, which you can edit with
any text editor such as the Vi editor; changing, if you wish, the values
assigned to parameter variables.

In the BASH shell, all the parameter variables are designed to be
environment variables.When you define or redefine a parameter variable,
you also need to export it to make it an environment variable. This means
any change you make to a parameter variable must be accompanied by an
export command. You will see that at the end of the login initialization
file, .bash_profile, there is usually an export command for all the
parameter variables defined in it.
Your Home Directory: HOME
The HOME variable contains the pathname of your home directory. Your
home directory is determined by the parameter administrator when your
account is created. The pathname for your home directory is
automatically read into your HOME variable when you log in. In the next
example, the echo command displays the contents of the HOME variable:
 $ echo $HOME
 /home/chris
The HOME variable is often used when you need to specify the absolute
pathname of your home directory. In the next example, the absolute
pathname of reports is specified using HOME for the home directory’s
path:
 $ ls $HOME/reports
Command Locations:
PATH

The PATH variable contains a series of directory paths separated
by colons. Each time a command is executed, the paths listed in the PATH
variable are searched one by one for that command. For example, the cp
command resides on the system in the directory /bin. This directory path is
one of the directories listed in the PATH variable. Each time you execute
the cp command, this path is searched and the cp command located. The
system defines and assigns PATH an initial set of pathnames. In Linux,
the initial pathnames are /bin and /usr/bin.
 The shell can execute any executable file, including programs and scripts
you have created. For this reason, the PATH variable can also reference
your working directory; so if you want to execute one of your own scripts
or programs in your working directory, the shell can locate it. No spaces
are allowed between the pathnames in the string. A colon with no
pathname specified references your working directory. Usually, a single

105

SHELL
CONFIGURATION

NOTES

colon is placed at the end of the pathnames as an empty entry specifying
your working directory.
$ echo $PATH
 /bin:/usr/sbin:
You can add any new directory path you want to the PATH variable. This
can be useful if you have created several of your own Linux commands
using shell scripts. You can place these new shell script commands in a
directory you create and then add that directory to the PATH list. Then, no
matter what directory you are in, you can execute one of your shell
scripts. The PATH variable will contain the directory for that script, so
that directory will be searched each time you issue a command.
You add a directory to the PATH variable with a variable assignment. You
can execute this assignment directly in your shell. In the next example,
the user chris adds a new directory, called mybin, to the PATH.
Although you could carefully type in the complete pathnames listed in
PATH for the assignment, you can also use an evaluation of PATH—
$PATH—in their place. In this example, an evaluation of HOME is also
used to designate the user’s home directory in the new directory’s
pathname. Notice the empty entry between two colons, which specifies
the working directory:
 $ PATH=$PATH:$HOME/mybin:
 $ export PATH
 $ echo $PATH
 /bin:/usr/bin::/home/chris/mybin
If you add a directory to PATH yourself while you are logged in, the
directory will be added only for the duration of your login session. When
you log back in, the login initialization file, .bash_profile, will again
initialize your PATH with its original set of directories.
 The .bash_profile file is described in detail a bit later in this chapter. To
add a new directory to your PATH permanently, you need to edit your
.bash_profile file and find the assignment for the PATH variable. Then,
you simply insert the directory, preceded by a colon, into the set of
pathnames assigned to PATH.
 Specifying the BASH Environment: BASH_ENV
 The BASH_ENV variable holds the name of the BASH shell
initialization file to be executed whenever a BASH shell is generated. For
example, when a BASH shell script is executed, the BASH_ENV
variable is checked and the name of the script that it holds is executed
before the shell script. The BASH_ENV variable usually holds
$HOME/.bashrc. This is the .bashrc file in the user’s home directory.

106

LINUX OPERATING SYSTEM

NOTES

(The .bashrc file is discussed later in this chapter.) You can specify a
different file if you wish, using that instead of the .bashrc file for BASH
shell scripts.
Configuring the Shell Prompt
The PS1 and PS2 variables contain the primary and secondary prompt
symbols, respectively. The primary prompt symbol for the BASH shell is a
dollar sign ($). You can change the prompt symbol by assigning a new set
of characters to the PS1 variable. In the next example, the shell prompt is
changed to the -> symbol:
 $ PS1= '->'
 -> export PS1 ->
 You can change the prompt to be any set of characters, including a string,
as shown in the next example:
$ PS1="Please enter a command: "
Please enter a command: export PS1
Please enter a command: ls
mydata /reports
Please enter a command:
The PS2 variable holds the secondary prompt symbol, which is used for
commands that take several lines to complete. The default secondary
prompt is >. The added command lines begin with the secondary prompt
instead of the primary prompt. You can change the secondary prompt just
as easily as the primary prompt, as shown here:
 $ PS2="@"
Like the TCSH shell, the BASH shell provides you with a predefined set of
codes you can use to configure your prompt. With them you can make the
time, your username, or your directory pathname a part of your prompt.
You can even have your prompt display the history event number of the
current command you are about to enter. Each code is preceded by a \
symbol: \w represents the current working directory, \t the time, and \u
your username; \! will display the next history event number. In the next
example, the user adds the current working directory to the prompt:
 $ PS1="\w $"
 /home/dylan $
 The codes must be included within a quoted string. If no quotes exist, the
code characters are not evaluated and are themselves used as the prompt.
PS1=\w sets the prompt to the characters \w, not the working directory.
The next example incorporates both the time and the history event
number with a new prompt:
 $ PS1="\t \! ->"

107

SHELL
CONFIGURATION

NOTES

The following table lists the codes for configuring your prompt:

The default BASH prompt is \s-\v\$ to display the type of shell, the shell
version, and the $ symbol as the prompt. Some distributions like Fedora
and Red Hat have changed this to a more complex command consisting
of the user, the hostname, and the name of the current working directory.
The actual operation is carried out in the /etc/bashrc file discussed in the
later section “The System /etc/ bashrc BASH Script and the /etc/profile.d
Directory.” A sample configuration is shown here. The /etc/ bashrc file
uses USER, HOSTNAME, and PWD environment variables to set these
values. A simple equivalent is show here with an @ sign in the hostname
and a $ for the final prompt symbol. The home directory is represented
with a tilde (~).
 $ PS1="\u@\h:\w$"
 richard@turtle.com:~$
 Specifying Your News Server
 Several shell parameter variables are used to set values used by network
applications, such as web browsers or newsreaders. NNTPSERVER is
used to set the value of a remote news server accessible on your network.
If you are using an ISP, the ISP usually provides a Usenet news server you
can access with your newsreader applications. However, you first have to
provide your newsreaders with the Internet address of the news server.
This is the role of the NNTPSERVER variable. News servers on the
Internet usually use the NNTP protocol. NNTPSERVER should hold the
address of such a news server. For many ISPs, the news server address is

mailto:richard@turtle.com:~$

108

LINUX OPERATING SYSTEM

NOTES

a domain name that begins with nntp. The following example assigns the
news server address nntp.myservice.com to the NNTPSERVER shell
variable. Newsreader applications automatically obtain the news server
address from NNTPSERVER. Usually, this assignment is placed in the
shell initialization file, .bash_profile, so that it is automatically set each
time a user logs in.
 NNTPSERVER=news.myservice.com
export NNTPSERVER
Configuring Your Login Shell: .bash_profile
The .bash_profile file is the BASH shell’s login initialization file, which
can also be named .profile (as in SUSE or Ubuntu Linux). It is a script
file that is automatically executed whenever a user logs in. The file
contains shell commands that define system environment variables used to
manage your shell. They may be either redefinitions of system-defined
variables or definitions of user-defined variables. For example, when you
log in, your user shell needs to know what directories hold Linux
commands. It will reference the PATH variable to find the pathnames for
these directories. However, first, the PATH variable must be assigned
those pathnames. In the .bash_profile file, an assignment operation does
just this. Because it is in the .bash_profile file, the assignment is executed
automatically when the user logs in.
Exporting Variables
 Parameter variables also need to be exported, using the export command,
to make them accessible to any subshell you may enter. You can export
several variables in one export command by listing them as arguments.
Usually, the .bash_profile file ends with an export command with a list of
all the variables defined in the file. If a variable is missing from this list,
you may be unable to access it. Notice the export command at the end of
the .profile file in the first example in the next section. You can also
combine the assignment and export command into one operation as shown
here for NNTPSERVER:
 export NNTPSERVER=news.myservice.com
Variable Assignments
A copy of the standard .bash_profile file provided for you when your
account is created is listed in the next example. Notice how PATH is
assigned, as is the value of $HOME. Both PATH and HOME are
parameter variables the system has already defined. PATH holds the
pathnames of directories searched for any command you enter, and
HOME holds the pathname of your home directory. The assignment
PATH=$PATH:$HOME/bin has the effect of redefining PATH to

109

SHELL
CONFIGURATION

NOTES

include your bin directory within your home directory so that your bin
directory will also be searched for any commands, including ones you
create yourself, such as scripts or programs. Notice PATH is then
exported, so that it can be accessed by any subshell. .bash_profile
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi
User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH
The root user version of .bash_profile adds an entry to unset the
USERNAME variable, which contains the user’s text name.

unset USERNAME
Should you want to have your home directory searched also, you

can use any text editor to modify this line in your .bash_profile file to
PATH=$PATH:$HOME/bin:$HOME, adding :$HOME at the end. In
fact, you can change this entry to add as many directories as you want
searched. If you add a colon at the end, then your current working
directory will also be searched for commands. Making commands
automatically executable in your current working directory could be a
security risk, allowing files in any directory to be executed, instead of in
certain specified directories. An example of how to modify your
.bash_profile file is shown in the following section.

PATH=$PATH:$HOME/bin:$HOME:
Editing Your BASH Profile Script
Your .bash_profile initialization file is a text file that can be edited by a
text editor, like any other text file. You can easily add new directories to
your PATH by editing .bash_profile and using editing commands to insert
a new directory pathname in the list of directory pathnames assigned to the
PATH variable. You can even add new variable definitions. If you do so,
however, be sure to include the new variable’s name in the export
command’s argument list. For example, if your .bash_profile file does
not have any definition of the EXINIT variable, you can edit the file and
add a new line that assigns a value to EXINIT. The definition
EXINIT='set nu ai' will configure the Vi editor with line numbering and
indentation. You then need to add EXINIT to the export command’s
argument list. When the .bash_profile file executes again, the EXINIT
variable will be set to the command set nu ai. When the Vi editor is

110

LINUX OPERATING SYSTEM

NOTES

invoked, the command in the EXINIT variable will be executed, setting
the line number and auto-indent options automatically.

In the following example, the user’s .bash_profile has been
modified to include definitions of EXINIT and redefinitions of PATH,
PS1, and HISTSIZE. The PATH variable has $HOME: added to its
value. $HOME is a variable that evaluates to the user’s home directory,
and the ending colon specifies the current working directory, enabling you
to execute commands that may be located in either the home directory or
the working directory. The redefinition of HISTSIZE reduces the number
of history events saved, from 1000 defined in the system’s .profile file, to
30. The redefinition of the PS1 parameter variable changes the prompt to
include the pathname of the current working directory. Any changes you
make to parameter variables within your .bash_profile file override those
made earlier by the system’s .profile file. All these parameter variables
are then exported with the export command.

.bash_profile
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc];
then
. ~/.bashrc
fi
User-specific environment and startup programs
 PATH=$PATH:$HOME/bin:$HOME:
 unset USERNAME
 HISTSIZE=30
 NNTPSERVER=news.myserver.com
 EXINIT='set nu ai'
 PS1="\w \$"
 export PATH HISTSIZE EXINIT PS1 NNTPSERVER

Manually Re-executing the .bash_profile Script
 Although .bash_profile is executed each time you log in, it is not

automatically re-execute after you make changes to it. The .bash_profile
file is an initialization file that is executed only whenever you log in. If
you want to take advantage of any changes you make to it without having
to log out and log in again, you can re-execute .bash_profile with the dot
(.) command. The .bash_profile file is a shell script and, like any shell
script, can be executed with the . command.

 $. .bash_profile

111

SHELL
CONFIGURATION

NOTES

Alternatively, you can use the source command to execute the
.bash_profile initialization file or any initialization file such as .login
used in the TCSH shell or .bashrc.

 $ source .bash_profile
System Shell Profile Script
Your Linux system also has its own profile file that it executes whenever
any user logs in. This system initialization file is simply called profile
and is found in the /etc directory, /etc/ profile. This file contains
parameter variable definitions the system needs to provide for each user.
A copy of the system’s profile file follows at the end of this section. On
some distributions, this will be a very simple file, and on others much
more complex. Some distributions like Fedora and Red Hat use a
pathmunge function to generate a directory list for the PATH variable.
Normal user paths will lack the system directories but include the name of
their home directory, along with /usr/kerberos/bin for Kerberos tools. The
path generated for the root user (EUID of 0) will include both system and
user application directories, adding /usr/kerberos/sbin, /sbin, /usr/sbin,
and /usr/local/ sbin, as well as the root user local application directory,
/root/bin.
 # echo $PATH
/usr/kerberos/bin/usr/local/bin:usr/sbin:/bin:/usr/X11R6/bin:/home/richard/b
in
A special work-around is included for the Korn Shell to set the User and
Effective User IDs (EUID and UID).
The USER, MAIL, and LOGNAME variables are then set, provided that
/usr/bin/id, which provides the user ID, is executable. The id command
with the -un option provides the user ID’s text name only, like chris or
richard.
HISTSIZE is also redefined to include a larger number of history events.
An entry has been added here for the NNTPSERVER variable.
Normally, a news server address is a value that needs to be set for all
users. Such assignments should be made in the system’s /etc/profile file by
the system administrator, rather than in each individual user’s own
.bash_profile file.

 The /etc/profile file also runs the /etc/inputrc file, which
configures your command line editor. Here you will find key assignments
for different tasks, such as moving to the end of a line or deleting
characters. Global options are set as well. Keys are represented in
hexadecimal format.

112

LINUX OPERATING SYSTEM

NOTES

The number of aliases and variable settings needed for different
applications would make the /etc/profile file much too large to manage.
Instead, application- and task-specific aliases and variables are placed in
separate configuration files located in the /etc/profile.d directory. There
are corresponding scripts for both the BASH and C shells. The BASH shell
scripts are run by /etc/profile. The scripts are named for the kinds of
tasks and applications they configure. For example, on Red Hat, sets the
file type color coding when the ls command displays files and directories.
The vim.sh file sets the an alias for the vi command, executing vim
whenever the user enters just vi. The kde.sh file sets the global
environment variable KDEDIR, specifying the KDE applications
directory, in this case /usr. The krb5.sh file adds the pathnames for
Kerberos, /usr/kerberos, to the PATH variable. Files run by the BASH
shell end in the extension .sh, and those run by the C shell have the
extension .csh.

 /etc/profile
 # /etc/profile
 # Systemwide environment and startup programs, for login

setup
 # Functions and aliases go in /etc/bashrc
 pathmunge () {
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
}
 # ksh workaround
 if [-z "$EUID" -a -x /usr/bin/id]; then
 EUID=`id -u`
 UID=`id -ru`
 fi
Path manipulation
if ["$EUID" = "0"]; then
pathmunge /sbin
pathmunge /usr/sbin
pathmunge /usr/local/sbin
fi

113

SHELL
CONFIGURATION

NOTES

No core files by default
ulimit -S -c 0 > /dev/null 2>&1
if [-x /usr/bin/id]; then
USER="`id -un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
fi
HOSTNAME=`/bin/hostname`
HISTSIZE=1000
if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then

INPUTRC=/etc/inputrc
fi
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE
INPUTRC

 for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
. $i
fi
done
 unset i
 unset pathmunge

Configuring the BASH Shell: .bashrc
The .bashrc file is a configuration file executed each time you enter the
BASH shell or generate a subshell. If the BASH shell is your login shell,
.bashrc is executed along with your .bash_login file when you log in. If
you enter the BASH shell from another shell, the .bashrc file is
automatically executed, and the variable and alias definitions it contains
will be defined. If you enter a different type of shell, the configuration file
for that shell will be executed instead. For example, if you were to enter
the TCSH shell with the tcsh command, the .tcshrc configuration file
would be executed instead of .bashrc.
The User .bashrc BASH Script
The .bashrc shell configuration file is actually executed each time you
generate a BASH shell, such as when you run a shell script. In other
words, each time a subshell is created, the .bashrc file is executed. This
has the effect of exporting any local variables or aliases you have defined
in the .bashrc shell initialization file. The .bashrc file usually contains the
definition of aliases and any feature variables used to turn on shell features.
Aliases and feature variables are locally defined within the shell. But the
.bashrc file defines them in every shell. For this reason, the .bashrc file

114

LINUX OPERATING SYSTEM

NOTES

usually holds aliases and options you want defined for each shell. In this
example, the standard .bashrc for users includes only the execution of the
system /etc/bashrc file. As an example of how you can add your own
aliases and options, aliases for the rm, cp, and mv commands and the shell
noclobber and ignoreeof options have been added. For the root user
.bashrc, the rm, cp, and mv aliases have already been included in the
root’s .bashrc file.
.bashrc
Source global definitions
if [-f /etc/bashrc];
then
. /etc/bashrc
fi
set -o ignoreeof
set -o noclobber
alias rm='rm -i'
alias mv='mv -i'
alias cp='cp -i'
You can add any commands or definitions of your own to your .bashrc
file. If you have made changes to .bashrc and you want them to take effect
during your current login session, you need to re-execute the file with
either the . or the source command.
$. .bashrc
The System /etc/bashrc BASH Script and the
/etc/profile.d Directory
 Linux systems usually contain a system bashrc file executed for all users.
The file contains certain global aliases and features needed by all users
whenever they enter a BASH shell. This is located in the /etc directory,
/etc/bashrc. A user’s own .bashrc file, located in the home directory,
contains commands to execute this system .bashrc file. The ./etc/bashrc
command in the previous example of .bashrc does just that. Currently the
/etc/bashrc file sets the default shell prompt, one for a terminal window
and another for a screen interface. Several other specialized aliases and
variables are then set using configuration files located in the
/etc/profile.d directory. These scripts are executed by /etc/bashrc if the
shell is not the user login shell.
The BASH Shell Logout File: .bash_logout
 The .bash_logout file is also a configuration file, but it is executed when
the user logs out. It is designed to perform any operations you want done
whenever you log out. Instead of variable definitions, the .bash_logout

115

SHELL
CONFIGURATION

NOTES

file usually contains shell commands that form a kind of shutdown
procedure—actions you always want taken before you log out. One
common logout command is to clear the screen and then issue a farewell
message.
 As with .bash_profile, you can add your own shell commands to
.bash_logout. In fact, the .bash_logout file is not automatically set up for
you when your account is first created.
 You need to create it yourself, using the Vi or Emacs editor. You could
then add a farewell message or other operations. In the next example, the
user has a clear command and an echo command in the .bash_logout
file. When the user logs out, the clear command clears the screen, and
then the echo command displays the message “Good-bye for now.”
 .bash_logout
 # ~/.bash_logout
 clear
 echo "Good-bye for now"
The TCSH Shell Configuration
The TCSH shell is essentially a version of the C shell with added features.
Configuration operations perform much the same tasks but with slightly
different syntax. The alias command operates the same but uses a
different command format. System variables are assigned values using
TCSH shell assignment operators, and the initialization and configuration
files have different names.
TCSH/C Aliases
 You use the alias command to create another name for a command. The
alias operates like a macro that expands to the command it represents.
The alias does not literally replace the name of the command; it simply
gives another name to that command. An alias command begins with the
keyword alias and the new name for the command, followed by the
command that the alias will reference. In the next example, the ls
command is aliased with the name list. list becomes another name for the
ls command.
 > alias list ls > ls
 mydata intro
 > list
 mydata intro
 >
Should the command you are aliasing have options, you will need to
enclose the command and the option within single quotes. An aliased

116

LINUX OPERATING SYSTEM

NOTES

command that has spaces will need quotation marks as well. In the next
example, ls with the -l option is given the alias longl:
 > alias longl 'ls -l'
 > ls -l
 -rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
 > longl
 -rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
 >

You can also use the name of a command as an alias. In the case of
the rm, cp, and mv commands, the -i option should always be used to
ensure that an existing file is not overwritten. Instead of always being
careful to use the -i option each time you use one of these commands, you
can alias the command name to include the option. In the next examples,
the rm, cp, and mv commands have been aliased to include the -i option.
 > alias rm 'rm -i'
 > alias mv 'mv -i'
 > alias cp 'cm -i'

 The alias command by itself provides a list of all aliases in effect
and their commands. An alias can be removed with the unalias
command.

> alias
 lss ls -s
 list ls
 rm rm -i
 > unalias lss

TCSH/C Shell Feature Variables: Shell Features
 The TCSH shell has several features that allow you to control how

different shell operations work. The TCSH shell’s features include those in
the PDSKH shell as well as many of its own. For example, the TCSH
shell has a noclobber option to prevent redirection from overwriting files.
Some of the more commonly used features are echo, noclobber,
ignoreeof, and noglob. The TCSH shell features are turned on and off by
defining and undefining a variable associated with that feature. A variable
is named for each feature, for example, the noclobber feature is turned on
by defining the noclobber variable. You use the set command to define a
variable and the unset command to undefine a variable. To turn on the
noclobber feature you issue the command set noclobber. To turn it off
you use the command unset noclobber.

 > set feature-variable
 > unset feature-variable

117

SHELL
CONFIGURATION

NOTES

 These variables are also sometimes referred to as toggles since
they are used to turn features on and off.
echo

 Setting echo enables a feature that displays a command before it is
executed. The command set echo turns the echo feature on, and the
command unset echo turns it off.
ignoreeof
 Setting ignoreeof enables a feature that prevents users from logging out of
the user shell with a CTRL-D. It is designed to prevent accidental
logouts. With this feature turned off, you can log out by pressing CTRL-
D. However, CTRL-D is also used to end user input entered directly into
the standard input. It is used often for the Mail program or for utilities such
as cat. You can easily enter an extra CTRL-D in such circumstances and
accidentally log yourself out. The ignoreeof feature prevents such
accidental logouts. When it is set, you have to explicitly log out, using the
logout command:
$ set ignoreeof
$ ^D
Use logout to logout
$
noclobber

Setting noclobber enables a feature that safeguards existing files
from redirected output.With the noclobber feature, if you redirect output
to a file that already exists, the file will not be overwritten with the
standard output. The original file will be preserved. There may be
situations in which you use a name that you have already given to an
existing file as the name for the file to hold the redirected output. The
noclobber feature prevents you from accidentally overwriting your
original file:
> set noclobber
> cat preface > myfile
myfile: file exists
$
There may be times when you want to overwrite a file with redirected
output. In this case, you can place an exclamation point after the
redirection operator. This will override the noclobber feature, replacing
the contents of the file with the standard output:
> cat preface >! myfile
noglob

118

LINUX OPERATING SYSTEM

NOTES

Setting noglob enables a feature that disables special characters in the user
shell. The characters *, ?, [], and ~ will no longer expand to matched
filenames. This feature is helpful if, for some reason, you have special
characters as part of a filename. In the next example, the user needs to
reference a file that ends with the ? character, answers?. First the user
turns off special characters, using the noglob option. Now the question
mark on the command line is taken as part of the filename, not as a
special character, and the user can reference the answers? file.
 $ set noglob
 $ ls answers?
 answers?

TCSH/C Special Shell Variables for Configuring Your
System
 As in the BASH shell, you can use special shell variables in the TCSH
shell to configure your system. Some are defined initially by your system,
and you can later redefine them with a new value. There are others that
you must initially define yourself. One of the more commonly used
special variables is the prompt variable that allows you to create your own
command line prompts. Another is the history variable with which you
determine how many history events you want to keep track of.
In the TCSH shell, many special variables have names and functions
similar to those in the BASH or Public Domain Korn Shell (PDKSH)
shells. Some are in uppercase, but most are written in lowercase. The
EXINIT and TERM variables retain their uppercase form. However,
history and cdpath are written in lowercase. Other special variables may
perform similar functions but have very different implementations. For
example, the mail variable holds the same information as the BASH
MAIL, MAILPATH, and MAILCHECK variables together.
 Prompt, prompt2, prompt3
 The prompt, prompt2, and prompt3 variables hold the prompts for your
command line. You can configure your prompt to be any symbol or string
that you want. To have your command line display a different symbol as
a prompt, you simply use the set command to assign that symbol to the
prompt variable. In the next example, the user assigns a + sign to the
prompt variable, making it the new prompt.
 > set prompt = "+"
+

119

SHELL
CONFIGURATION

NOTES

You can use a predefined set of codes to make configuring your prompt
easier. With them, you can make the time, your username, or your
directory pathname a part of your prompt. You can even have your
prompt display the history event number of the current command you are
about to enter. Each code is preceded by a % symbol, for example, %/
represents the current working directory, %t the time, and %n your
username. %! will display the next history event number. In the next
example, the user adds the current working directory to the prompt.
> set prompt = "%/ >"
/home/dylan >
The next example incorporates both the time and the history event number
with a new prompt. > set prompt = "%t %! $"
 Here is a list of the codes:

The prompt2 variable is used in special cases when a command may take
several lines to input. prompt2 is displayed for the added lines needed for
entering the command. prompt3 is the prompt used if the spell check
feature is activated.
cdpath
The cdpath variable holds the pathnames of directories to be searched for
specified subdirectories referenced with the cd command. These
pathnames form an array just like the array of pathnames assigned to the
TCSH shell path variable. Notice the space between the pathnames.
> set cdpath=(/usr/chris/reports /usr/chris/letters)
History and savehist
As you learned earlier, the history variable can be used to determine the
number of history events you want saved. You simply assign to it the
maximum number of events that history will record. When the maximum
is reached, the count starts over again from 1. The savehist variable,
however, holds the number of events that will be saved in the file .history
when you log out. When you log in again, these events will become the
initial history list.

 In the next example, up to 20 events will be recorded in your
history list while you are logged in. However, only the last 5 will be

120

LINUX OPERATING SYSTEM

NOTES

saved in the .history file when you log out. Upon logging in again, your
history list will consist of your last 5 commands from the previous
session.

> set history=20
 > set savehist=5

Mail
 In the TCSH shell, the mail variable combines the features of the

MAIL, MAILCHECK, and MAILPATH variables in the BASH and
PDKSH shells. The TCSH shell mail variable is assigned as its value an
array whose elements contain both the time interval for checking for mail
and the directory pathnames for mailbox files to be checked. To assign
values to these elements, you assign an array of values to the mail
variable. The array of new values is specified with a list of words
separated by spaces and enclosed in parentheses. The first value is a
number that sets the number of seconds to wait before checking for mail
again. This value is comparable to that held by the BASH shell’s
MAILCHECK variable. The remaining values consist of the directory
pathnames of mailbox files that are to be checked for your mail. Notice
that these values combine the functions of the BASH and Korn shells’
MAIL and MAILPATH variables.

 In the next example, the mail variable is set to check for mail
every 20 minutes (1200 seconds), and the mailbox file checked is in
usr/mail/chris. The first value in the array assigned to mail is 1200, and
the second value in the array is the pathname of the mailbox file to be
checked.

> set mail (1200 /usr/mail/chris)
 You can, just as easily, add more mailbox file pathnames to the

mail array. In the next example, two mailboxes are designated. Notice the
spaces surrounding each element.

 > set mail (1200 /usr/mail/chris /home/mail/chris)
TCSH/C Shell Initialization Files: .login, .tcshrc, .logout
 The TCSH shell has three initialization files: .login, .logout, and .tcshrc.
The files are named for the operation they execute. The .login file is a
login initialization file that executes each time you log in. The .logout file
executes each time you log out. The .tcshrc file is a shell initialization
file that executes each time you enter the TCSH shell, either from logging
in or by explicitly changing to the TCSH shell from another shell with the
tcsh command.
 .login

121

SHELL
CONFIGURATION

NOTES

The TCSH shell has its own login initialization file called the .login file
that contains shell commands and special variable definitions used to
configure your shell. The .login file corresponds to the .profile file used
in the BASH and PDKSH shells.
 A .login file contains setenv commands that assign values to special
environment variables, such as TERM. You can change these assigned
values by editing the .login file with any of the standard editors. You can
also add new values. Remember, however, that in the TCSH shell, the
command for assigning a value to an environment variable is setenv. In the
next example, the EXINIT variable is defined and assigned the Vi editor’s
line numbering and auto-indent options.
 > setenv EXINIT 'set nu ai'
 Be careful when editing your .login file. Inadvertent editing changes could
cause variables to be set incorrectly or not at all. It is wise to make a
backup of your .login file before editing it.

 If you have made changes to your .login file and you want the
changes to take effect during your current login session, you will need to
re-execute the file. You do so using the source command. The source
command will actually execute any initialization file, including the
.tcshrc and .logout files. In the next example, the user re-executes the
.login file.

> source .login
If you are also planning to use the PDKSH shell on your Linux

system, you need to define a variable called ENV within your .login file
and assign it the name of the PDKSH shell initialization file. If you
should later decide to enter the PDKSH shell from your TCSH shell, the
PDKSH shell initialization file can be located and executed for you. In the
example of the .login file shown next, you will see that the last command
sets the PDKSH shell initialization file to .kshrc to the ENV variable:
setenv ENV $HOME/.kshrc.

.login
setenv term vt100
setenv EXINIT 'set nu ai'
setenv ENV $HOME/.kshrc

 .tcshrc
 The .tcshrc initialization file is executed each time you enter the
TCSH shell or generate any subshell. If the TCSH shell is your login
shell, then the .tcshrc file is executed along with your .login file when
you log in. If you enter the TCSH shell from another shell, the .tcshrc file

122

LINUX OPERATING SYSTEM

NOTES

is automatically executed, and the variable and alias definitions it contains
will be defined.
 The .tcshrc shell initialization file is actually executed each time
you generate a shell, such as when you run a shell script. In other words,
each time a subshell is created, the .tcshrc file is executed. This allows you
to define local variables in the .tcshrc initialization file and have them, in a
sense, exported to any subshell. Even though such user-defined special
variables as history are local, they will be defined for each subshell
generated. In this way, history is set for each subshell. However, each
subshell has its own local history variable. You could even change the
local history variable in one subshell without affecting any of those in
other subshells. Defining special variables in the shell initialization file
allows you to treat them like BASH shell exported variables. An exported
variable in a BASH or PDKSH shell only passes a copy of itself to any
subshell. Changing the copy does not affect the original definition.

The .tcshrc file also contains the definition of aliases and any
feature variables used to turn on shell features. Aliases and feature
variables are locally defined within the shell. But the .tcshrc file will
define them in every shell. For this reason, .tcshrc usually holds such
aliases as those defined for the rm, cp, and mv commands. The next
example is a .tcshrc file with many of the standard definitions.

 .tcshrc
 set shell=/usr/bin/csh
 set path= $PATH (/bin /usr/bin .)
 set cdpath=(/home/chris/reports /home/chris/letters)
 set prompt="! $cwd >"
 set history=20
 set ignoreeof
 set noclobber
 alias rm 'rm -i'
 alias mv 'mv -i'
 alias cp 'cm -i'
Local variables, unlike environment variables, are defined with the

set command. Any local variables that you define in .tcshrc should use the
set command. Any variables defined with setenv as environment variables,
such as TERM, should be placed in the .login file. The next example
shows the kinds of definitions found in the .tcshrc file. Notice that the
history and noclobber variables are defined using the set command.

 set history=20
 set noclobber

123

SHELL
CONFIGURATION

NOTES

You can edit any of the values assigned to these variables.
However, when editing the pathnames assigned to path or cdpath, bear in
mind that these pathnames are contained in an array. Each element in an
array is separated by a space. If you add a new pathname, you need to be
sure that there is a space separating it from the other pathnames.

 If you have made changes to .tcshrc and you want them to take
effect during your current login session, remember to re-execute the
.tcshrc file with the source command:
> source .tcshrc
.logout
The .logout file is also an initialization file, but it is executed when the
user logs out. It is designed to perform any operations you want done
whenever you log out. Instead of variable definitions, the .logout file
usually contains shell commands that form a shutdown procedure. For
example, one common logout command is the one to check for any active
background jobs; another is to clear the screen and then issue a farewell
message.
 As with .login, you can add your own shell commands to the .logout file.
Using the Vi editor, you can change the farewell message or add other
operations. In the next example, the user has a clear and an echo
command in the .logout file. When the user logs out, the clear command
will clear the screen, and echo will display the message “Good-bye for
now”.
 .logout
 clear
 echo "Good-bye for now"
Review & Self Assessment Question :
Q1- What is Aliasing Command ?
Q2- What do youn mean by shell parametrized variable ?
Q3- What do you mean by Initialization files?
Q4- What is PATH variable ?
Q5- What do you mean by Exporting Variable ?
Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

124

LINUX OPERATING SYSTEM

NOTES

UNIT: 6- LINUX FILES,
DIRECTORIES, AND ARCHIVES

Contents
 Introduction
 Linux Files
 Pathnames
 System Directories
 Referencing the Parent Directory
 Locating Directories
 Copying Files
 Moving Files
 Displaying archive contents
 Review & Self Assessment Question
 Further Readings

Introduction
In Linux, all files are organized into directories that, in turn, are

hierarchically connected to each other in one overall file structure. A file
is referenced not according to just its name, but also according to its place
in this file structure. You can create as many new directories as you want,
adding more directories to the file structure. The Linux file commands can
perform sophisticated operations, such as moving or copying whole
directories along with their subdirectories. You can use file operations such
as find, cp, mv, and ln to locate files and copy, move, or link them from
one directory to another. Desktop file managers, such as Konqueror and
Nautilus used on the KDE and GNOME desktops, provide a graphical
user interface to perform the same operations using icons, windows,and
menus. This chapter will focus on the commands you use in the shell
command line to manage files, such as cp and mv. However, whether you
use the command line or a GUI file manager, the underlying file structure
is the same.

The organization of the Linux file structure into its various system
and network administration directories is discussed in detail in Chapter
32. Though not part of the Linux file structure, there are also special tools
you can use to access Windows partitions and floppy disks. These follow
much the same format as Linux file commands.

125

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

 Archives are used to back up files or to combine them into a
package, which can then be transferred as one file over the Internet or
posted on an FTP site for easy downloading. The standard archive utility
used on Linux and Unix systems is tar, for which several GUI front ends
exist. You have several compression programs to choose from, including
GNU zip (gzip), Zip, bzip, and compress.
Linux Files
You can name a file using any letters, underscores, and numbers. You can
also include periods and commas. Except in certain special cases, you
should never begin a filename with a period. Other characters, such as
slashes, question marks, or asterisks, are reserved for use as special
characters by the system and should not be part of a filename. Filenames
can be as long as 256 characters. Filenames can also include spaces,
though to reference such filenames from the command line, be sure to
encase them in quotes. On a desktop like GNOME or KDE, you do not
need quotes.

You can include an extension as part of a filename. A period is
used to distinguish the filename proper from the extension. Extensions
can be useful for categorizing your files. You are probably familiar with
certain standard extensions that have been adopted by convention. For
example, C source code files always have an extension of .c. Files that
contain compiled object code have a.o extension. You can, of course, make
up your own file extensions. The following examples are all valid Linux
filenames. Keep in mind that to reference the last of these names on the
command line, you would have to encase it in quotes as “New book
review”:

 preface
 chapter2
 9700info
 New_Revisions
 calc.c
 intro.bk1
 New book review
Special initialization files are also used to hold shell configuration

commands. These are the hidden, or dot, files, which begin with a period.
Dot files used by commands and applications have predetermined names,
such as the .mozilla directory used to hold your Mozilla data and
configuration files. Recall that when you use ls to display your filenames,
the dot files will not be displayed. To include the dot files, you need to use
ls with the -a option.

126

LINUX OPERATING SYSTEM

NOTES

The ls -l command displays detailed information about a file. First
the permissions are displayed, followed by the number of links, the owner
of the file, the name of the group the user belongs to, the file size in bytes,
the date and time the file was last modified, and the name of the file.
Permissions indicate who can access the file: the user, members of a group,
or all other users. Permissions are discussed in detail later in this chapter.
The group name indicates the group permitted to access the file object. In
the example in the next paragraph, the file type for mydata is that of an
ordinary file. Only one link exists, indicating the file has no other names
and no other links. The owner’s name is chris, the same as the login name,
and the group name is weather. Other users probably also belong to the
weather group. The size of the file is 207 bytes, and it was last modified
on February 20 at 11:55 A.M. The name of the file is mydata.

 If you want to display this detailed information for all the files in a
directory, simply use the ls -l command without an argument.

$ ls -l
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
-rw-rw-r-- 1 chris weather 568 Feb 14 10:30 today
-rw-rw-r-- 1 chris weather 308 Feb 17 12:40 Monday
 All files in Linux have one physical format—a byte stream. A byte

stream is just a sequence of bytes. This allows Linux to apply the file
concept to every data component in the system. Directories are classified
as files, as are devices. Treating everything as a file allows Linux to
organize and exchange data more easily. The data in a file can be sent
directly to a device such as a screen because a device interfaces with the
system using the same byte-stream file format as regular files.

 This same file format is used to implement other operating system
components. The interface to a device, such as the screen or keyboard, is
designated as a file. Other components, such as directories, are themselves
byte-stream files, but they have a special internal organization. A directory
file contains information about a directory, organized in a special
directory format. Because these different components are treated as files,
they can be said to constitute different file types. A character device is
one file type. A directory is another file type. The number of these file
types may vary according to your specific implementation of Linux. Five
common types of files exist, however: ordinary files, directory files, first-in
first-out pipes, character device files, and block device files. Although
you may rarely reference a file’s type, it can be useful when searching for
directories or devices. Later in the chapter, you’ll see how to use the file

127

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

type in a search criterion with the find command to search specifically for
directory or device names.

 Although all ordinary files have a byte-stream format, they may be
used in different ways. The most significant difference is between binary
and text files. Compiled programs are examples of binary files. However,
even text files can be classified according to their different uses. You can
have files that contain C programming source code or shell commands, or
even a file that is empty. The file could be an executable program or a
directory file. The Linux file command helps you determine what a file is
used for. It examines the first few lines of a file and tries to determine a
classification for it. The file command looks for special keywords or
special numbers in those first few lines, but it is not always accurate. In
the next example, the file command examines the contents of two files
and determines a classification for them:

 $ file monday reports
 monday: text
 reports: directory

 If you need to examine the entire file byte by byte, you can do so with
the od (octal dump) command. The od command performs a dump of a
file. By default, it prints every byte in its octal representation. However,
you can also specify a character, decimal, or hexadecimal representation.
The od command is helpful when you need to detect any special character
in your file or if you want to display a binary file.
The File Structure
Linux organizes files into a hierarchically connected set of directories.
Each directory may contain either files or other directories. In this respect,
directories perform two important functions. A directory holds files,
much like files held in a file drawer, and a directory connects to other
directories, much as a branch in a tree is connected to other branches.
Because of the similarities to a tree, such a structure is often referred to as
a tree structure

 The Linux file structure branches into several directories beginning
with a root directory, /. Within the root directory, several system
directories contain files and programs that are features of the Linux
system. The root directory also contains a directory called /home that
contains the home directories of all the users in the system. Each user’s
home directory, in turn, contains the directories the user has made for his
or her own use. Each of these can also contain directories. Such nested
directories branch out from the user’s home directory..
 Home Directories

128

LINUX OPERATING SYSTEM

NOTES

 When you log in to the system, you are placed within your home
directory. The name given to this directory by the system is the same as
your login name. Any files you create when you first log in are organized
within your home directory. Within your home directory, however, you
can create more directories. You can then change to these directories and
store files in them. The same is true for other users on the system. Each
user has his or her own home directory, identified by the appropriate
login name. Users, in turn, can create their own directories.

You can access a directory either through its name or by making it
your working directory. Each directory is given a name when it is created.
You can use this name in file operations to access files in that directory.
You can also make the directory your working directory. If you do not use
any directory names in a file operation, the working directory will be
accessed. The working directory is the one from which you are currently
working. When you log in, the working directory is your home directory,
usually having the same name as your login name. You can change the
working directory by using the cd command to designate another directory
as the working directory.
Pathnames
The name you give to a directory or file when you create it is not its full
name. The full name of a directory is its pathname. The hierarchically
nested relationship among directories forms paths, and these paths can be
used to identify and reference any directory or file uniquely or absolutely.
Each directory in the file structure can be said to have its own unique path.
The actual name by which the system identifies a directory always begins
with the root directory and consists of all directories nested below that
directory.

 In Linux, you write a pathname by listing each directory in the
path separated from the last by a forward slash. A slash preceding the first
directory in the path represents the root. The pathname for the robert
directory is /home/robert. The pathname for the reports directory is
/home/chris/reports. Pathnames also apply to files. When you create a file
within a directory, you give the file a name. The actual name by which the
system identifies the file, however, is the filename combined with the
path of directories from the root to the file’s directory. As an example, the
pathname for monday is /home/chris/reports/monday (the root directory
is represented by the first slash). The path for the monday file consists of
the root, home, chris, and reports directories and the filename monday.

 Pathnames may be absolute or relative. An absolute pathname is
the complete pathname of a file or directory beginning with the root

129

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

directory. A relative pathname begins from your working directory; it is
the path of a file relative to your working directory. The working
directory is the one you are currently operating in. Using the previous
example, if chris is your working directory, the relative pathname for the
file monday is reports/monday.

The absolute pathname for monday is
/home/chris/reports/monday. The absolute pathname from the root to
your home directory can be especially complex and, at times, even subject
to change by the system administrator. To make it easier to reference, you
can use a special character, the tilde (~), which represents the absolute
pathname of your home directory. In the next example, from the thankyou
directory, the user references the weather file in the home directory by
placing a tilde and slash before weather:

 $ pwd
 /home/chris/letters/thankyou
$ cat ~/weather
 raining and warm
$

You must specify the rest of the path from your home directory. In the next
example, the user references the monday file in the reports directory. The
tilde represents the path to the user’s home directory, /home/chris, and
then the rest of the path to the monday file is specified.
 $ cat ~/reports/monday
System Directories
The root directory that begins the Linux file structure contains several
system directories. The system directories contain files and programs
used to run and maintain the system. Many contain other subdirectories
with programs for executing specific features of Linux. For example, the
directory /usr/bin contains the various Linux commands that users
execute, such as lpl. The directory /bin holds system-level commands.
Listing, Displaying, and Printing Files: ls, cat, more,
less, and lpr
One of the primary functions of an operating system is the management of
files. You may need to perform certain basic output operations on your
files, such as displaying them on your screen or printing them. The Linux
system provides a set of commands that perform basic file-management
operations, such as listing, displaying, and printing files, as well as
copying, renaming, and erasing files. The command names are usually
made up of abbreviated versions of words. For example, the ls command
is a shortened form of “list” and lists the files in your directory. The lpr

130

LINUX OPERATING SYSTEM

NOTES

command is an abbreviated form of “line print” and will print a file. The
cat, less, and more commands display the contents of a file on the screen.
Table 6-2 lists these commands with their different options. When you log
in to your Linux system, you may want a list of the files in your home
directory. The ls command, which outputs a list of your file and directory
names, is useful for this. The ls command has many possible options for
displaying filenames according to specific features.

 Displaying Files: cat, less, and more

You may also need to look at the contents of a file. The cat and
more commands display the contents of a file on the screen. The name
cat stands for concatenate.

 $ cat mydata
 computers
 The cat command outputs the entire text of a file to the screen at

once. This presents a problem when the file is large because its text
quickly speeds past on the screen. The more and less commands are
designed to overcome this limitation by displaying one screen of text at a
time. You can then move forward or backward in the text at your leisure.
You invoke the more or less command by entering the command name
followed by the name of the file you want to view (less is a more
powerful and configurable display utility).

$ less mydata
When more or less invokes a file, the first screen of text is

displayed. To continue to the next screen, you press the F key or the

131

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

SPACEBAR. To move back in the text, you press the B key. You can quit
at any time by pressing the Q key.

Printing Files: lpr, lpq, and lprm
With the printer commands such as lpr and lprm, you can perform
printing operations such as printing files or canceling print jobs (see Table
6-2). When you need to print files, use the lpr command to send files to
the printer connected to your system. In the next example, the user prints
the mydata file:
 $ lpr mydata
If you want to print several files at once, you can specify more than one
file on the command line after the lpr command. In the next example, the
user prints out both the mydata and preface files:
 $ lpr mydata preface
 Printing jobs are placed in a queue and printed one at a time in the
background. You can continue with other work as your files print. You
can see the position of a particular printing job at any given time with the
lpq command, which gives the owner of the printing job (the login name
of the user who sent the job), t he print job ID, the size in bytes, and the
temporary file in which it is currently held.
 If you need to cancel an unwanted printing job, you can do so with the
lprm command, which takes as its argument either the ID number of the
printing job or the owner’s name. It then removes the print job from the
print queue. For this task, lpq is helpful, for it provides you with the ID
number and owner of the printing job you need to use with lprm.
Managing Directories: mkdir, rmdir, ls, cd, and pwd
 You can create and remove your own directories, as well as change your
working directory, with the mkdir, rmdir, and cd commands. Each of
these commands can take as its argument the pathname for a directory.
The pwd command displays the absolute pathname of your single dot, a

132

LINUX OPERATING SYSTEM

NOTES

double dot, and a tilde can be used to reference the working directory, the
parent of the working directory, and the home directory, respectively.
Taken together, these commands enable you to manage your directories.
You can create nested directories, move from one directory to another,
and use pathnames to reference any of your directories.
Creating and Deleting Directories
You create and remove directories with the mkdir and rmdir commands.
In either case, you can also use pathnames for the directories. In the next
example, the user creates the directory reports. Then the user creates the
directory letters using a pathname:
 $ mkdir reports
 $ mkdir /home/chris/letters

 You can remove a directory with the rmdir command followed by the
directory name. In the next example, the user removes the directory
reports with the rmdir command:
 $ rmdir reports
 To remove a directory and all its subdirectories, you use the rm
command with the -r option. This is a very powerful command and can
easily be used to erase all your files. If your rm command is aliased as
rm -i (interactive mode), you will be prompted for each file. To simply
remove all files and subdirectories without prompts, add the -f option. The
following example deletes the reports directory and all its subdirectories:

133

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

rm -rf reports
 Displaying Directory Contents

You have seen how to use the ls command to list the files and directories
within your working directory. To distinguish between file and directory
names, however, you need to use the ls command with the -F option. A
slash is then placed after each directory name in the list.
 $ ls
 weather reports letters
 $ ls -F weather reports/ letters/
The ls command also takes as an argument any directory name or directory
pathname. This enables you to list the files in any directory without first
having to change to that directory. In the next example, the ls command
takes as its argument the name of a directory, reports. Then the ls
command is executed again, only this time the absolute pathname of
reports is used.
$ ls reports
 monday tuesday
$ ls /home/chris/reports
monday tuesday
 $
Moving Through Directories
The cd command takes as its argument the name of the directory to which
you want to change. The name of the directory can be the name of a
subdirectory in your working directory or the full pathname of any
directory on the system. If you want to change back to your home
directory, you only need to enter the cd command by itself, without a
filename argument.
 $ cd props
$ pwd
 /home/dylan/props
 Referencing the Parent Directory
 A directory always has a parent (except, of course, for the root). For
example, in the preceding listing, the parent for props is the dylan
directory. When a directory is created, two entries are made: one
represented with a dot (.), and the other with double dots (..). The dot
represents the pathname of the directory, and the double dots represent the
pathname of its parent directory. Double dots, used as an argument in a

134

LINUX OPERATING SYSTEM

NOTES

command, reference a parent directory. The single dot references the
directory itself.
You can use the single dot to reference your working directory, instead of
using its pathname. For example, to copy a file to the working directory,
retaining the same name, the dot can be used in place of the working
directory’s pathname. In this sense, the dot is another name for the
working directory. In the next example, the user copies the weather file
from the chris directory to the reports directory. The reports directory is
the working directory and can be represented with the single dot.
 $ cd reports
 $ cp /home/chris/weather .
 The .. symbol is often used to reference files in the parent directory. In the
next example, the cat command displays the weather file in the parent
directory. The pathname for the file is the .. symbol followed by a slash
and the filename.
 $ cat ../weather
 raining and warm
 File and Directory Operations: find, cp, mv, rm, and ln
 As you create more and more files, you may want to back them up, change
their names, erase some of them, or even give them added names. Linux
provides you with several file commands that enable you to search for
files, copy files, rename files, or remove files. If you have a large number
of files, you can also search them to locate a specific one. The command
names shortened forms of full words, consisting of only two characters.
The cp command stands for “copy” and copies a file, mv stands for
“move” and renames or moves a file, rm stands for “remove” and erases a
file, and ln stands for “link” and adds another name for a file, often used
as a shortcut to the original. One exception to the two-character rule is the
find command, which performs searches of your filenames to find a file.
All these operations can be handled by the GUI desktops such as
GNOME and KDE.
Searching Directories: find
 Once you have a large number of files in many different directories, you
may need to search them to locate a specific file, or files, of a certain
type. The find command enables you to perform such a search from the
command line. The find command takes as its arguments directory names
followed by several possible options that specify the type of search and the
criteria for the search; it then searches within the directories listed and their
subdirectories for files that meet these criteria. The find command can

135

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

search for a file by name, type, owner, and even the time of the last
update.
 $ find directory-list -option criteria
 The -name option has as its criteria a pattern and instructs find to search
for the filename that matches that pattern. To search for a file by name,
you use the find command with the directory name followed by the -
name option and the name of the file.
$ find directory-list -name filename
 The find command also has options that merely perform actions, such as
outputting the results of a search. If you want find to display the
filenames it has found, you simply include the -print option on the
command line along with any other options. The -print option is an
action that instructs find to write to the standard output the names of all the
files it locates (you can also use the -ls option instead to list files in the
long format). In the next example, the user searches for all the files in the
reports directory with the name monday. Once located, the file, with its
relative pathname, is printed.
 $ find reports -name monday -print
 reports/monday

 The find command prints out the filenames using the directory
name specified in the directory list. If you specify an absolute pathname,
the absolute path of the found directories will be output. If you specify a
relative pathname, only the relative pathname will be output. In the
preceding example, the user specified a relative pathname, reports, in the
directory list. Located filenames were output beginning with this relative
pathname. In the next example, the user specifies an absolute pathname in
the directory list. Located filenames are then output using this absolute
pathname.

 $ find /home/chris -name monday -print
 /home/chris/reports/Monday

Searching the Working Directory
If you want to search your working directory, you can use the dot in the
directory pathname to represent your working directory. The double dots
represent the parent directory. The next example searches all files and
subdirectories in the working directory, using the dot to represent the
working directory. If you are located in your home directory, this is a
convenient way to search through all your own directories. Notice the
located filenames are output beginning with a dot.
 $ find . -name weather –print
 ./weather

136

LINUX OPERATING SYSTEM

NOTES

You can use shell wildcard characters as part of the pattern criterion for
searching files. The special character must be quoted, however, to avoid
evaluation by the shell. In the next example, all files with the .c extension
in the programs directory are searched for and then displayed in the long
format using the -ls action:
 $ find programs -name '*.c' -ls
Locating Directories
You can also use the find command to locate other directories. In Linux, a
directory is officially classified as a special type of file. Although all files
have a byte-stream format, some files, such as directories, are used in
special ways. In this sense, a file can be said to have a file type. The find
command has an option called -type that searches for a file of a given
type. The -type option takes a one-character modifier that represents the
file type. The modifier that represents a directory is a d. In the next
example, both the directory name and the directory file type are used to
search for the directory called thankyou:
 $ find /home/chris -name thankyou -type d -print
 /home/chris/letters/thankyou
 $
File types are not so much different types of files as they are the file format
applied to other components of the operating system, such as devices. In
this sense, a device is treated as a type of file, and you can use find to
search for devices and directories, as well as ordinary files. Table 6-4 lists
the different types available for the find command’s -type option.
 You can also use the find operation to search for files by ownership or
security criteria, like those belonging to a specific user or those with a
certain security context. The user option lets you locate all files
belonging to a certain user. The following example lists all files that the
user chris has created or owns on the entire system. To list those just in the
users’ home directories, you use /home for the starting search directory.
This finds all files in a user's home directory as well as any owned by that
user in other user directories.
 $ find / -user chris -print
Copying Files
To make a copy of a file, you simply give cp two filenames as its
arguments. The first filename is the name of the file to be copied—the one
that already exists. This is often referred to as the source file. The second
filename is the name you want for the copy. This will be a new file
containing a copy of all the data in the source file. This second argument

137

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

is often referred to as the destination file. The syntax for the cp command
follows:
 $ cp source-file destination-file

In the next example, the user copies a file called proposal to a new file
called oldprop:
 $ cp proposal oldprop
 You can unintentionally destroy another file with the cp command. The cp
command generates a copy by first creating a file and then copying data
into it. If another file has the same name as the destination file, that file
will be destroyed and a new file with that name created. By default Red
Hat configures your system to check for an existing copy by the same
name. To copy a file from your working directory to another directory,
you only need to use that directory name as the

138

LINUX OPERATING SYSTEM

NOTES

 second argument in the cp command. In the next example, the proposal
file is overwritten by the newprop file. The proposal file already exists.
$ cp newprop proposal
You can use any of the wildcard characters to generate a list of filenames
to use with cp or mv. For example, suppose you need to copy all your C
source code files to a given directory. Instead of listing each one
individually on the command line, you can use an * character with the .c
extension to match and generate a list of C source code files (all files with
a .c extension). In the next example, the user copies all source code files in
the current directory to the sourcebks directory:

 $ cp *.c sourcebks
 If you want to copy all the files in a given directory to another

directory, you can use * to generate a list of all those files in a cp
command. In the next example, the user copies all the files in the props
directory to the oldprop directory. Notice the use of the props pathname
preceding the * special characters. In this context, props is a pathname that
will be appended before each file in the list that * generates.

 $ cp props/* oldprop
You can, of course, use any of the other special characters, such as

., ?, or []. In the next example, the user copies both source code and
object code files (.c and .o) to the projbk directory:

 $ cp *.[oc] projbk
 When you copy a file, you may want to give the copy a different

name than the original. To do so, place the new filename after the
directory name, separated by a slash. $ cp filename directory-name/new-
filename
Moving Files
You can use the mv command to either rename a file or move a file from
one directory to another. When using mv to rename a file, you simply use
the new filename as the second argument. The first argument is the
current name of the file you are renaming. If you want to rename a file
when you move it, you can specify the new name of the file after the
directory name. In the next example, the proposal file is renamed with the
name version1:
 $ mv proposal version1
 As with cp, it is easy for mv to erase a file accidentally. When renaming a
file, you might accidentally choose a filename already used by another
file. In this case, that other file will be erased. The mv command also has
an -i option that checks first to see if a file by that name already exists.

139

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

You can also use any of the special characters described in Chapter 3 to
generate a list of filenames to use with mv. In the next example, the user
moves all C source code files in the current directory to the newproj
directory:
 $ mv *.c newproj
 If you want to move all the files in a given directory to another directory,
you can use * to generate a list of all those files. In the next example, the
user moves all the files in the reports directory to the repbks directory:
$ mv reports/* repbks
Copying and Moving Directories
You can also copy or move whole directories at once. Both cp and mv can
take as their first argument a directory name, enabling you to copy or
move subdirectories from one directory into another. The first argument is
the name of the directory to be moved or copied, while the second
argument is the name of the directory within which it is to be placed. The
same pathname structure used for files applies to moving or copying
directories.
You can just as easily copy subdirectories from one directory to another.
To copy a directory, the cp command requires you to use the -r option.
The -r option stands for “recursive.” It directs the cp command to copy a
directory, as well as any subdirectories it may contain. In other words, the
entire directory subtree, from that directory on, will be copied. In the next
example, the thankyou directory is copied to the oldletters directory.
Now two thankyou subdirectories exist, one in letters and one in
oldletters.
$ cp -r letters/thankyou oldletters
 $ ls -F letters
 /thankyou
 $ ls -F oldletters
 /thankyou
Erasing Files and Directories: The rm Command
 As you use Linux, you will find the number of files you use increases
rapidly. Generating files in Linux is easy. Applications such as editors,
and commands such as cp, easily create files. Eventually, many of these
files may become outdated and useless. You can then remove them with
the rm command. The rm command can take any number of arguments,
enabling you to list several filenames and erase them all at the same time.
In the next example, the user erases the file oldprop:

$ rm oldprop

140

LINUX OPERATING SYSTEM

NOTES

 Be careful when using the rm command, because it is irrevocable. Once a
file is removed, it cannot be restored (there is no undo). With the -i
option, you are prompted separately for each file and asked whether to
remove it. If you enter y, the file will be removed. If you enter anything
else, the file is not removed. In the next example, the rm command is
instructed to erase the files proposal and oldprop. The rm command
then asks for confirmation for each file. The user decides to remove
oldprop, but not proposal.

$ rm -i proposal oldprop
Remove proposal? n
Remove oldprop? y
$
Links: The ln Command
 You can give a file more than one name using the ln command. You
might want to reference a file using different filenames to access it from
different directories. The added names are often referred to as links.
Linux supports two different types of links, hard and symbolic. Hard links
are literally another name for the same file, whereas symbolic links
function like shortcuts referencing another file. Symbolic links are much
more flexible and can work over many different file systems, whereas
hard links are limited to your local file system. Furthermore, hard links
introduce security concerns, as they allow direct access from a link that
may have public access to an original file that you may want protected.
Because of this, links are usually implemented as symbolic links.
Symbolic Links
To set up a symbolic link, you use the ln command with the -s option and
two arguments: the name of the original file and the new, added filename.
The ls operation lists both filenames, but only one physical file will exist.
 $ ln -s original-file-name added-file-name
 In the next example, the today file is given the additional name weather.
It is just another name for the today file.
 $ ls
 today
 $ ln -s today weather
 $ ls
 today weather
 You can give the same file several names by using the ln command on the
same file many times. In the next example, the file today is given both
the names weather and weekend:
 $ ln -s today weather

141

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

 $ ln -s today weekend
 $ ls
today weather weekend
 If you list the full information about a symbolic link and its file, you will
find the information displayed is different. In the next example, the user
lists the full information for both lunch and /home/george/veglist using
the ls command with the -l option. The first character in the line specifies
the file type. Symbolic links have their own file type, represented by an l.
The file type for lunch is l, indicating it is a symbolic link, not an ordinary
file. The number after the term “group” is the size of the file. Notice the
sizes differ. The size of the lunch file is only four bytes. This is because
lunch is only a symbolic link—a file that holds the pathname of another
file—and a pathname takes up only a few bytes. It is not a direct hard link
to the veglist file.
$ ls -l lunch /home/george/veglist
 -rw-rw-r-- 1 george group 793 Feb 14 10:30 veglist
 lrw-rw-r-- 1 chris group 4 Feb 14 10:30 lunch
 To erase a file, you need to remove only its original name (and any hard
links to it). If any symbolic links are left over, they will be unable to
access the file. In this case, a symbolic link will hold the pathname of a
file that no longer exists.
Hard Links
You can give the same file several names by using the ln command on the
same file many times. To set up a hard link, you use the ln command with
no -s option and two arguments: the name of the original file and the new,
added filename. The ls operation lists both filenames, but only one
physical file will exist.
 $ ln original-file-name added-file-name
 In the next example, the monday file is given the additional name storm.
It is just another name for the monday file.
 $ ls
 today
 $ ln monday storm
 $ ls
 monday storm
 To erase a file that has hard links, you need to remove all its hard links.
The name of a file is actually considered a link to that file—hence the
command rm that removes the link to the file. If you have several links to
the file and remove only one of them, the others stay in place and you can
reference the file through them. The same is true even if you remove the

142

LINUX OPERATING SYSTEM

NOTES

original link—the original name of the file. Any added links will work just
as well. In the next example, the today file is removed with the rm
command. However, a link to that same file exists, called weather. The
file can then be referenced under the name weather.
$ ln today weather
$ rm today
$ cat weather
The storm broke today
and the sun came out.
$
The mtools Utilities: msdos
Your Linux system provides a set of utilities, known as mtools, that enable
you to easily access floppy and hard disks formatted for MS-DOS. They
work only with the old MS-DOS or FAT32 file systems, not with
Windows Vista, XP, NT, or 2000, which use the NTFS file system. The
mcopy command enables you to copy files to and from an MS-DOS
floppy disk in your floppy drive or a Windows FAT32 partition on your
hard drive. No special operations, such as mounting, are required. With
mtools, you needn’t mount an MS-DOS partition to access it. For an MS-
DOS floppy disk, once you place the disk in your floppy drive, you can use
mtool commands to access those files. For example, to copy a file from an
MS-DOS floppy disk to your Linux system, use the mcopy command.
You specify the MS-DOS disk with a: for the A drive. Unlike normal DOS
pathnames, pathnames used with mtool commands use forward slashes
instead of backslashes. The directory docs on the A drive would be
referenced by the pathname a:/docs, not a:\docs. Unlike MS-DOS, which
defaults the second argument to the current directory, you always need to
supply the second argument for mcopy. The next example copies the file
mydata to the MS-DOS disk and then copies the preface file from the
disk to the current Linux directory.
$ mcopy mydata a:
$ mcopy a:/preface
Archiving and Compressing Files
Archives are used to back up files or to combine them into a package,
which can then be transferred as one file over the Internet or posted on an
FTP site for easy downloading. The standard archive utility used on
Linux and Unix systems is tar, for which several GUI front ends exist.
You have several compression programs to choose from, including GNU
zip (gzip), Zip, bzip, and compress.

143

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

Archiving and Compressing Files with File Roller

GNOME provides the File Roller tool (accessible from the Accessories
menu, labeled Archive Manager) that operates as a GUI front end to
archive and compress files, letting you perform Zip, gzip, tar, and bzip2
operations using a GUI. You can examine the contents of archives,
extract the files you want, and create new compressed archives. When you
create an archive, you determine its compression method by specifying its
filename extension, such as .gz for gzip or .bz2 for bzip2. You can select
the different extensions from the File Type menu or enter the extension
yourself. To both archive and compress files, you can choose a combined
extension like .tar.bz2, which both archives with tar and compresses with
bzip2. Click Add to add files to your archive. To extract files from an
archive, open the archive to display the list of archive files. You can then
click Extract to extract particular files or the entire archive.
Archive Files and Devices: tar
The tar utility creates archives for files and directories. With tar, you can
archive specific files, update them in the archive, and add new files to an
archive. You can even archive entire directories with all their files and
subdirectories, all of which can be restored from the archive. The tar
utility was originally designed to create archives on tapes. (The term “tar”
stands for tape archive. However, you can create archives on any device,
such as a floppy disk, or you can create an archive file to hold the archive.)
The tar utility is ideal for making backups of your files or combining
several files into a single file for transmission across a network (File
Roller is a GUI for tar).
Displaying Archive Contents
Both file managers in GNOME and the K Desktop have the capability to
display the contents of a tar archive file automatically. The contents are
displayed as though they were files in a directory. You can list the files as
icons or with details, sorting them by name, type, or other fields. You can
even display the contents of files. Clicking a text file opens it with a text
editor, and an image is displayed with an image viewer. If the file manager
cannot determine what program to use to display the file, it prompts you to
select an application.Both file managers can perform the same kinds of
operations on archives residing on remote file systems, such as tar archives
on FTP sites. You can obtain a listing of their contents and even read their
readme files. The Nautilus file manager (GNOME) can also extract an
archive. Right-click the Archive icon and select Extract.

144

LINUX OPERATING SYSTEM

NOTES

Creating Archives
On Linux, tar is often used to create archives on devices or files. You can
direct tar to archive files to a specific device or a file by using the f option
with the name of the device or file. The syntax for the tar command using
the f option is shown in the next example. The device or filename is often
referred to as the archive name. When creating a file for a tar archive, the
filename is usually given the extension .tar. This is a convention only and
is not required. You can list as many filenames as you want. If a directory
name is specified, all its subdirectories are included in the archive.
 $ tar optionsf archive-name.tar directory-and-file-names
 To create an archive, use the c option. Combined with the f option, c
creates an archive on a file or device. You enter this option before and
right next to the f option. Notice no dash precedes a tar option.In the
next example, the directory mydir and all its subdirectories are saved in
the file myarch.tar. In this example, the mydir directory holds two files,
mymeeting and party, as well as a directory called reports that has three
files: weather, monday, and friday.
 $ tar cvf myarch.tar mydir
 mydir/
 mydir/reports/
 mydir/reports/weather

 mydir/reports/monday
 mydir/reports/friday

145

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

 mydir/mymeeting
 mydir/party
 Extracting Archives
The user can later extract files and directories from the archive using the x
option. The xf option extracts files from an archive file or device. The tar
extraction operation generates all subdirectories. In the next example, the
xf option directs tar to extract all the files and subdirectories from the tar
file myarch.tar:
 $ tar xvf myarch.tar
 mydir/
 mydir/reports/
 mydir/reports/weather
 mydir/reports/monday
 mydir/reports/friday
 mydir/mymeeting
 mydir/party
 You use the r option to add files to an already-created archive. The r
option appends the files to the archive. In the next example, the user
appends the files in the letters directory to the myarch.tar archive. Here,
the directory mydocs and its files are added to the myarch.tar archive:
 $ tar rvf myarch.tar mydocs
 mydocs/
 mydocs/doc1
Updating Archives
If you change any of the files in your directories you previously archived,
you can use the u option to instruct tar to update the archive with any
modified files. The tar command compares the time of the last update for
each archived file with those in the user’s directory and copies into the
archive any files that have been changed since they were last archived.
Any newly created files in these directories are also added to the archive.
In the next example, the user updates the myarch.tar file with any
recently modified or newly created files in the mydir directory. In this
case, the gifts file is added to the mydir directory.
 tar uvf myarch.tar mydir
 mydir/
 mydir/gifts
 If you need to see what files are stored in an archive, you can use the tar
command with the t option. The next example lists all the files stored in
the myarch.tar archive:
tar tvf myarch.tar

146

LINUX OPERATING SYSTEM

NOTES

 drwxr-xr-x root/root 0 2000-10-24 21:38:18 mydir/
 drwxr-xr-x root/root 0 2000-10-24 21:38:51 mydir/reports/
 -rw-r--r-- root/root 22 2000-10-24 21:38:40 mydir/reports/weather
 -rw-r--r-- root/root 22 2000-10-24 21:38:45 mydir/reports/monday
 -rw-r--r-- root/root 22 2000-10-24 21:38:51 mydir/reports/Friday
 -rw-r--r-- root/root 22 2000-10-24 21:38:18 mydir/mymeeting
 -rw-r--r-- root/root 22 2000-10-24 21:36:42 mydir/party
 drwxr-xr-x root/root 0 2000-10-24 21:48:45 mydocs/
 -rw-r--r-- root/root 22 2000-10-24 21:48:45 mydocs/doc1
 drwxr-xr-x root/root 0 2000-10-24 21:54:03 mydir/
 -rw-r--r-- root/root 22 2000-10-24 21:54:03 mydir/gifts
Archiving to Floppies
To back up the files to a specific device, specify the device as the archive.
For a floppy disk, you can specify the floppy drive. Be sure to use a blank
floppy disk. Any data previously placed on it will be erased by this
operation. In the next example, the user creates an archive on the floppy
disk in the /dev/fd0 device and copies into it all the files in the mydir
directory:
$ tar cf /dev/fd0 mydir
To extract the backed-up files on the disk in the device, use the xf option:
$ tar xf /dev/fd0
Compressing Archives
The tar operation does not perform compression on archived files. If you
want to compress the archived files, you can instruct tar to invoke the
gzip utility to compress them. With the lowercase z option, tar first uses
gzip to compress files before archiving them. The same z option invokes
gzip to decompress them when extracting files.
 $ tar czf myarch.tar.gz mydir
 To use bzip instead of gzip to compress files before archiving them, you
use the j option. The same j option invokes bzip to decompress them when
extracting files.
$ tar cjf myarch.tar.bz2 mydir
Remember, a difference exists between compressing individual files in an
archive and compressing the entire archive as a whole. Often, an archive is
created for transferring several files at once as one tar file. To shorten
transmission time, the archive should be as small as possible. You can use
the compression utility gzip on the archive tar file to compress it, reducing
its size, and then send the compressed version. The person receiving it
can decompress it, restoring the tar file. Using gzip on a tar file often
results in a file with the extension .tar.gz. The extension .gz is added to a

147

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

compressed gzip file. The next example creates a compressed version of
myarch.tar using the same name with the extension .gz:
 $ gzip myarch.tar
 $ ls
 $ myarch.tar.gz
 Instead of retyping the tar command for different files, you can place the
command in a script and pass the files to it. Be sure to make the script
executable. In the following example, a simple myarchprog script is
created that will archive filenames listed as its arguments.
myarchprog
tar cvf myarch.tar $*
A run of the myarchprog script with multiple arguments is shown here:

 $ myarchprog mydata preface
 mydata
 preface

 Archiving to Tape
 If you have a default device specified, such as a tape, and you want to
create an archive on it, you can simply use tar without the f option and a
device or filename. This can be helpful for making backups of your files.
The name of the default device is held in a file called /etc/default/tar. The
syntax for the tar command using the default tape device is shown in the
following example. If a directory name is specified, all its subdirectories
are included in the archive.
$ tar option directory-and-file-names
In the next example, the directory mydir and all its subdirectories are
saved on a tape in the default tape device:
$ tar c mydir
In this example, the mydir directory and all its files and subdirectories are
extracted from the default tape device and placed in the user’s working
directory:
$ tar x mydir
File Compression: gzip, bzip2, and zip
 Several reasons exist for reducing the size of a file. The two most common
are to save space or, if you are transferring the file across a network, to
save transmission time. You can effectively reduce a file size by creating a
compressed copy of it. Anytime you need the file again, you decompress
it. Compression is used in combination with archiving to enable you to
compress whole directories and their files at once. Decompression
generates a copy of the archive file, which can then be extracted,

148

LINUX OPERATING SYSTEM

NOTES

generating a copy of those files and directories. File Roller provides a
GUI for these tasks.
Compression with gzip
Several compression utilities are available for use on Linux and Unix
systems. Most software for Linux systems uses the GNU gzip and gunzip
utilities. The gzip utility compresses files, and gunzip decompresses
them. To compress a file, enter the command gzip and the filename. This
replaces the file with a compressed version of it with the extension .gz.
$ gzip mydata
$ ls
mydata.gz
 To decompress a gzip file, use either gzip with the -d option or the
command gunzip. These commands decompress a compressed file with
the .gz extension and replace it with a decompressed version with the
same root name but without the .gz extension. You needn’t even type in
the .gz extension; gunzip and gzip -d assume it. Table lists the different
gzip options.
 $ gunzip mydata.gz
 $ ls
 Mydata
You can also compress archived tar files. This results in files with the
extensions .tar.gz. Compressed archived files are often used for
transmitting extremely large files across networks.
 $ gzip myarch.tar
 $ ls
 myarch.tar.gz

149

LINUX FILES, DIRECTORIES,
AND ARCHIVES

NOTES

 You can compress tar file members individually using the tar z option
that invokes gzip. With the z option, tar invokes gzip to compress a file
before placing it in an archive.Archives with members compressed with
the z option, however, cannot be updated, nor is it possible to add to them.
All members must be compressed, and all must be added at the same time.
The compress and uncompress Commands
You can also use the compress and uncompress commands to create
compressed files.They generate a file that has a .Z extension and use a
different compression format from gzip. The compress and uncompress
commands are not that widely used, but you may run across .Z files
occasionally. You can use the uncompress command to decompress a .Z
file. The gzip utility is the standard GNU compression utility and should be
used instead of compress.
Compressing with bzip2
Another popular compression utility is bzip2. It compresses files using the
Burrows-Wheeler block-sorting text compression algorithm and Huffman
coding. The command line options are similar to gzip by design, but they
are not exactly the same. (See the bzip2 Man page for a complete listing.)
You compress files using the bzip2 command and decompress with
bunzip2. The bzip2 command creates files with the extension .bz2. You
can use bzcat to output compressed data to the standard output. The
bzip2 command compresses files in blocks and enables you to specify their
size. As when using gzip, you can use bzip2 to compress tar archive files.
The following example compresses the mydata file into a bzip compressed
file with the extension .bz2:
 $ bzip2 mydata
 $ ls mydata.bz2
 To decompress, use the bunzip2 command on a bzip file:
 $ bunzip2 mydata.bz2
 Using Zip
Zip is a compression and archive utility modeled on PKZIP, which was
used originally on DOS systems. Zip is a cross-platform utility used on
Windows, Mac, MS-DOS, OS/2, Unix, and Linux systems. Zip commands
can work with archives created by PKZIP and can use Zip archives. You
compress a file using the zip command. This creates a Zip file with the
.zip extension. If no files are listed, zip outputs the compressed data to the
standard output. You can also use the - argument to have zip read from
the standard input. To compress a directory, you include the -r option.
The first example archives and compresses a file:
 $ zip mydata

150

LINUX OPERATING SYSTEM

NOTES

 $ ls
mydata.zip
The next example archives and compresses the reports directory:
$ zip -r reports
A full set of archive operations is supported. With the -f option, you can
update a particular file in the Zip archive with a newer version. The -u
option replaces or adds files, and the -d option deletes files from the Zip
archive. Options also exist for encrypting files, making DOS-to-Unix end-
of-line translations and including hidden files.
 To decompress and extract the Zip file, you use the unzip command.
 $ unzip mydata.zip
Review & Self Assessment Question:

Q1- What is Linux Files ?
Q2- What do you mean by File Structure ?
Q3-What is Pathname ?
Q4-Explain the commands for Creating and Deleting Directories ?

Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

151

NETWORKING INTERNET
AND THE WEB

NOTES

UNIT: 7- NETWORKING,
INTERNET, AND THE WEB

Contents
 Introduction
 Networking Protocol
 The Internet
 Network Addresses
 Clinet/Server
 Domain Name System
 SSh with X11 forwarding
 Remote file Synchronization
 Public Key:Cryptography signature and Digital Signature
 Message Digests
 The Web
 HTNL
 URL’s
 The DNS
 Review & Self Assessment Question
 Further Readings

Introduction
Early packet-switched computer networking, involving a few

research institutions and government agencies, started in the late 1960s
and early 1970s.Today, it is hard to tell where the computer ends and the
network begins. The view “The Network is the Computer” is more valid
than ever. Most people cannot tolerate even a few minutes of Internet
connection outage.
 A computer network is a high-speed communications medium connecting
many, possibly dissimilar, computers or hosts. A network is a combination
of computer and telecommunication hardware and software. The purpose
is to provide fast and reliable information exchange among the hosts.
Typical services made possible by a network include
• Electronic mail

• On-line chatting and Internet phone calls

• File transfer

• Remote login

152

LINUX OPERATING SYSTEM

NOTES

 • Distributed databases

 • Networked file systems

 • Audio and video streaming

 • Voice and telephone over a network

 • World Wide Web, E-business, E-commerce, and social networks

 • Remote procedure and object access

 In addition to host computers, the network itself may involve dedicated
computers that perform network functions: hubs, switches, bridges,
routers, and gateways. A network extends greatly the powers of the
connected hosts.
 A good understanding of basic networking concepts, commands,
information security, and how the Web works will be important for any
Linux user/programmer.
Networking Protocols
For programs and computers from different vendors, under different
operating systems, to communicate on a network, a detailed set of rules
and conventions must be established for all parties to follow.Such rules
are known as networking protocols.We use different networking services
for different purposes; therefore, each network service follows its own
specific protocols. Protocols govern such details as
 • Address format of hosts and processes

 • Data format

 • Manner of data transmission

 • Sequencing and addressing of messages

 • Initiating and terminating connections

 • Establishing services

 • Accessing services

 • Data integrity, privacy, and security

Thus, for a process on one host to communicate with another process on a
different host, both processes must follow the same protocol. The Open
System Interconnect (OSI) Reference Model provides a standard layered
view of networking protocols and their interdependence. The
corresponding layers on different hosts, and inside the network
infrastructure, perform complementary tasks to make the connection
between the communicating processes .

153

NETWORKING INTERNET
AND THE WEB

NOTES

 Among common networking protocols, the Internet Protocol Suite is the
most widely used. The basic IP (Internet Protocol) is a network layer
protocol.The TCP (Transport Control Protocol) and UDP (User Datagram
Protocol) are at the transport layer. The Web is a service that uses an
application layer protocol known as HTTP (the Hypertext Transfer
Protocol).

Networking protocols are no mystery. Think about the protocol for
making a telephone call. You (a client process) must pick up the phone,
listen for the dial tone, dial a valid telephone number, and wait for the
other side (the server process) to pick up the phone. Then you must say
“hello,” identify yourself, and so on. This is a protocol from which you
cannot deviate if you want the call to be made successfully through the
telephone network, and it is clear why such a protocol is needed. The same
is true of a computer program attempting to talk to another computer
program through a computer network. The design of efficient and effective
networking protocols for different network services is an important area
in computer science.

Chances are your Linux system is on a Local Area Network (LAN)
which is connected to the Internet. This means you have the ability to
reach, almost instantaneously, across great distances to obtain information,
exchange messages, upload/download files, interact with others, do
literature searches,and much more without leaving the seat in front of your
workstation. If your computer is not directly connected to a network but
has a telephone or cable modem, then you can reach the Internet through
an Internet service provider (ISP).
The Internet

The Internet is a global network that connects computer networks
using the Internet Protocol (IP). The linking of computer networks is
called internetworking, hence the name Internet. The Internet links all
kinds of organizations around the world: universities, government offices,
corporations, libraries, supercomputer centers, research labs, and

154

LINUX OPERATING SYSTEM

NOTES

individual homes. The number of connections on the Internet is large and
growing rapidly.

The Internet evolved from the ARPANET,1 a U.S. Department of
Defense Advanced Research Projects Agency (DARPA) sponsored
network that developed the IP as well as the higher level Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) networking
protocols. The architecture and protocol were designed to support a
reliable and flexible network that could endure wartime attacks.

 The transition of ARPANET to the Internet took place in the late
1980s as NSFnet, the U.S. National Science Foundation’s network of
universities and it has virtually eliminated all historical rivals such as
BITNET and DECnet.

 The Internet Corporation for Assigned Names and Numbers
(ICANN) is a nonprofit organization responsible for IP address space
allocation, protocol parameter assignment, domain name system
management, and maintaining root server system functions.
 Network Addresses

An address to a host computer is like a phone number to a
telephone. Every host on the Internet has its own network address that
identifies the host for communication purposes. The addressing technique
is an important part of a network and its protocol. An Internet address (IP
address) is represented by 4 bytes in a 32-bit quantity. For example,
monkey, a host at Kent State, has the IP address 131.123.41.83 . This dot
notation (or quad notation)

gives the decimal value (0 to 255) of each byte.2 The IP address is similar
to a telephone number in another way: the leading digits are like area
codes, and the trailing digits are like local numbers.

Because of their numerical nature, the dot notation is easy on
machines but hard on users. Therefore, each host may also have a domain
name composed of words, rather like a postal address. For example, the
domain name for monkey is monkey.cs.kent.edu (at the Department of
Computer Science, Kent State University). The Linux command host
displays the IP and domain name of any given host. For example,

host monkey.cs.kent.edu
displays
monkey.cs.kent.edu is an alias for monkey.zodiac.cs.kent.edu.
monkey.zodiac.cs.kent.edu has address 131.123.41.83

155

NETWORKING INTERNET
AND THE WEB

NOTES

With domain names, the entire Internet name space for hosts is recursively
divided into disjoint domains in a hierarchical tree (Figure 7.3). The
address for monkey puts it in the cs local domain, within the kent
subdomain, which is under the edu top-level domain (TLD) for U.S.
educational institutions.

Other TLDs include org (nonprofit organizations), gov (U.S. government
offices), mil (U.S. military installations), com (commercial outfits), net
(network service providers), uk (United Kingdom), cn (China), and so
forth. Within a local domain (for example, cs.kent.edu), you can refer to
machines by their hostname alone (for example, monkey, dragon, tiger),
but the full address must be used for machines outside.
 The ICANN accredits domain name registrars, which register domain
names for clients so they stay distinct. All network applications accept a
host address given either as a domain name or as an IP address. In fact, a
domain name is first translated to a numerical IP address before being
used.
Packet Switching
Data on the Internet are sent and received in packets. A packet envelops
transmitted data with address information so the data can be routed through
intermediate computers on the network. Because there are multiple routes
from the source to the destination host, the Internet is very reliable and can
operate even if parts of the network are down.
 Client and Server
 Most commonly, a network application involves a server and a client
 • A server process provides a specific service on a host machine that offers
such a service. Example services are email (SMTP), secure remote host
access (SSH), secure file transfer (SFTP), and the World Wide Web
(HTTP). Each Internet standard service has its own unique port number
that is identical on all hosts. The port number together with the Internet
address of a host indentifies a particular server program any where on the
network. For example, SFTP has port number 115, SSH has 22, and
HTTP has 80. On your Linux system, the file /etc/services lists the

156

LINUX OPERATING SYSTEM

NOTES

standard and additional network services, indicating their protocols and
port numbers.
• A client process on a host connects with a server on another host to
obtain its service. Thus, a client program is the agent through which a
particular network service can be obtained. Different agents are usually
required for different services.
AWeb browser such as Firefox is an HTTP client. It runs on your
computer to access Web servers on any Internet hosts. The Linux wget
command is another useful client that can download files from the
Internet using the HTTP or the FTP protocol.
The Domain Name System
As stated in previous Section, every host on the Internet has a unique IP
address and a domain name. The network name space, the set of all domain
names with their associated IP addresses, changes dynamically with time
due to the addition and deletion of hosts, regrouping of local work
groups, reconfiguration of subparts of the network, maintenance of systems
and networks, and so on. Thus, new domain names, new IP addresses, and
new domain to- IP associations can be introduced in the name space at any
time without central control. The domain name system (DNS) is a network
service that supports dynamic update and retrieval of information
contained in the distributed name space. A network client program (for
example, the Firefox browser) will normally use the DNS to obtain IP
address information

for a target host before making contact with a server. The dynamic DNS
also supplies a general mechanism for retrieving many kinds of
information about hosts and individual users.
 Here are points to note about the DNS name space:
• The DNS organizes the entire Internet name space into a big tree
structure. Each node of the tree represents a domain and has a label and a
list of resources.
• Labels are character strings (currently not case sensitive), and sibling
labels must be distinct. The root is labeled by the empty string.
Immediately below the root are the TLDs: edu, com, gov, net, org, info,
and so on. TLDs also include country names such as at (Austria), ca
(Canada), and cn (China). Under edu, for example, there are subdomains
berkeley, kent, mit, uiuc, and so on .
• A full domain name of a node is a dot-separated list of labels leading
from the node to the root.

157

NETWORKING INTERNET
AND THE WEB

NOTES

• A relative domain name is a prefix of a full domain name, indicating a
node relative to a domain of origin. Thus, cs.kent.edu is actually a name
relative to the root.
• A label is the formal or canonical name of a domain. Alternative names,
called aliases, are also allowed. For example, the main Web server host
info has the alias www, so it is also known as www.cs.kent.edu. To move
the Web server to a different host, a local system manager reassigns the
alias to another host.
Networking in Nautilus

Linux systems are listed individually. Systems running other
operating systems are grouped under different icons such as the Windows
Network icon. Of course, you can browse only machines with permission.
Normally, login will be required unless you have arranged a no-password
login
For example, these Locations work:
 • sftp
• ssh
• sftp
Accessing Samba Shared Files
Usually, you’ll find Linux and MS Windows R systems on the same in-
house network. Nautilus makes it easy to access shared files from MS
Windows R. Just enter the Location
 smb://host/share folder
 to reach the target shared folder via the Common Internet File System
protocol, the successor of Server Message Block (SMB). Linux systems
use SaMBa, a free, open-source implementation of the CIFS file sharing
protocol, to act as server and client to MS Windows R systems. Use an IP
for the host to be sure. Here ae some Location examples on a home
network.
 smb://192.168.2.102/SharedDocs
 smb://192.168.2.107/Public
Networking Commands
Linux offers many networking commands. Some common ones are
described here to get you started. In earlier chapters, we mentioned
briefly several networking commands. For example, we know that
hostiname
displays the domain name of the computer you are using. If given an
argument, this command can also set the domain name (when run as root),
but the domain name is usually only set at system boot time. To get the IP

http://www.cs.kent.edu.

158

LINUX OPERATING SYSTEM

NOTES

address and other key information from the DNS about your computer or
another host, you can use
host $(hostname) (for your computer)
host targetHost (for target host)
For example, host google.com produces
 google.com has address 74.125.45.100
 google.com has address 74.125.67.100
 google.com has address 209.85.171.100
 google.com mail is handled by 10 smtp4.google.com.
 google.com mail is handled by 10 smtp1.google.com.
 google.com mail is handled by 10 smtp2.google.com.
 google.com mail is handled by 10 smtp3.google.com.
For any given host, its DNS data provide IP address, canonical domain
name, alias domain names, DNS server hosts, and email handling hosts.
Other commands that help you access the DNS data from the command
line include nslookup and dig (DNS Information Groper).
For example, dig monkey.cs.kent.edu
 gives
 ; <<>> DiG 9.5.0-P2 <<>> monkey.cs.kent.edu
 ;; QUESTION SECTION:
;monkey.cs.kent.edu. IN A
 ;; ANSWER SECTION:
 monkey.cs.kent.edu.1800 IN CNAME monkey.zodiac.cs.kent.edu.
monkey.zodiac.cs.kent.edu. 43200 IN A 131.123.41.83
 ;; AUTHORITY SECTION:
zodiac.cs.kent.edu. 300 IN NS ns.cs.kent.edu.
zodiac.cs.kent.edu. 300 IN NS ns.math.kent.edu.
;; Query time: 152 msec
 ;; SERVER: 192.168.2.1#53(192.168.2.1)
The desired information (ANSWER section) together with the identity of
the name server (SERVER) that provided the data is displayed.
The command dig is very handy for verifying the existence of hosts and
finding the IP address or domain name aliases of hosts. Once the name of
a host is known, you can also test if the host is up and running, as far as
networking is concerned, with the ping command.
 ping host
 This sends a message to the given remote host requesting it to respond
with an echo if it is alive and well.
 To see if any remote host is up and running, you can use ping, which
sends an echo Internet control message to the remote host. If the echo

159

NETWORKING INTERNET
AND THE WEB

NOTES

comes back, you’ll know that the host is up and connected to the Internet.
You’ll also get round-trip times and packet loss statistics. When
successful, the ping commands continues to send echo packets. Type ctrl+c
to quit.
SSH with X11 Forwarding
 Networking allows you to conveniently access Linux systems remotely.
Most Linux distributions come with OpenSSH installed. As mentioned in
Chapter 1, Section 1.2, you can ssh to a remote Linux and use it from the
command line. Furthermore, you can
 ssh -X userid @remoteHostname
to log in to the given remote host with X11 forwarding/tunneling, which
allows you to start any X applications, such as gedit or gnome-terminal,
on the remote host and have the graphical display appear on your local
desktop.
This works if your local host is a Linux/UNIX/MacOS system. It can also
work from MS Windows R. Follow these steps:
1. Obtain and install an X11 server on Windows, such as the Xming or the
heavier duty Cygwin.
2. Assuming you have downloaded and installed Xming, click the Xming
icon to launch the X11 server. The X11 server displays an icon on your
start panel so you know it is running.
3. Set up SSH or Putty on your Windows R system:
• Putty Settings—Go to Connection->SSH->X11 and check the Enable
X11 forwarding box. Also set X display location to 127.0.0.1:0.0.
• SSH Settings—Check the Tunneling->Tunnel X11 Connections box.
Also check the Authentication->Enable SSH2 connections box.
4. Use either Putty or SSH to connect to a remote Linux/Unix computer.
Make sure your remote account login script, such as .bash profile, does
not set the DISPLAY environment variable. It will be set for you to
something like localhost:10.0 automatically when you connect via SSH.
5. Make sure your X11 server (Xming for example) is running. Now, if
you start an X application on the remote Linux system, that graphical
application will then SSH tunnel to your PC and use the X11 server on
your PC to display a graphical user interface (GUI). For example, you can
start gedit, nautilus --no-desktop, or even firefox.
No Password ssh, sftp, and scp
The commands ssh, sftp, and scp are for remote login, secure ftp, and
secure remote cp, respectively. When using any of these you usually need
to enter the password for the remote system interactively. When you need

160

LINUX OPERATING SYSTEM

NOTES

to perform such tasks frequently, this can be a bother. Fortunately, you
can easily avoid having to enter the password. Just follow these steps.

Most Linux systems come with Open SSH installed. This means
you already have the SSH suite of commands. These enable you to
securely communicate from one computer (as user1 on host1) to another
(as user2 on host2). We will assume you are logged in as user1 on host1
(this is your local host), and you wish to arrange secure communication
with your account user2 on host2, which we will refer to as the remote
host.

SSH can use public-key encryption for data security and user
authentication. If you have not done it yet, the first step in arranging for
password-less login is to generate your own SSH keys. Issue the command

 ssh-keygen
You’ll be asked for a folder to save the keys and a passphrase to access
them. In this case, don’t provide any input in response to these questions
from sshkeygen. Simply press the enter key in response to each question.

 Key generation takes a little time. Then you’ll see a message
telling you that your identity (private key) is id_rsa and your public key is
id_rsa.pub saved under the standard folder .ssh. in your home directory.

 The second step is to copy your id_rsa.pub to your account on the
desired remote-host. Issue the command

ssh-copy-id -i ~/.ssh/id_rsa.pub your userid @ remote-host
 to append your public SSH key to the file ~userid/.ssh/authorized_key on
the remote-host. Now you are all set. You can log in to remote-host
without entering a password.

ssh userid @ remote-host
The same setup avoids a password when you use sftp or scp.
Remote File Synchronization
The rsync command makes it easy to keep files in sync between two hosts.
It is very efficient because it uses a remote-update protocol to transfer just
the differences between two sets of files across the network connection. No
updating is performed for files with no difference. With the commands
 rsync -az userid @ host:source destDir (remote to local sync)
 rsync -az source userid @ host:destDir (local to remote sync)
the given source file/folder is used to update the same under the destination
folder destDir. When source is a folder, the entire hierarchy rooted at the
folder will be updated.

The -az option indicates the commonly used archive mode to
preserve file types and modes and gzip data compression to save
networking bandwidth. The rsync tool normally uses ssh for secure data

161

NETWORKING INTERNET
AND THE WEB

NOTES

transfer and does not require a password if you have set up password-less
SSH between the two hosts .
For example,

rsync -az pwang@monkey.cs.kent.edu:~/linux book ~/projects/
updates the local folder ~/projects/linux_book based on the remote folder
~/linux_book by logging in as pwang on the remote host
monkey.cs.kent.edu. See the rsync man page for complete documentation.

Public-Key Cryptography and Digital Signature
Security is a big concern when it comes to networking. From the user’s
viewpoint, it is important to keep data and network transport secure and
private. Public-key cryptography is an essential part of the modern network
security infrastructure to provide privacy and security for many networking
applications. Before the invention of public-key cryptography, the same
secret key had to be used for both encryption and decryption of a message
(symmetric-key cryptography). Symmetric-key is fine and efficient, and
remains in widespread use today. However, a secret key is hard to arrange
among strangers never in communication before; for example, parties on
the Internet. The public-key cryptography breakthrough solves this key
distribution problem elegantly.

GnuPG (GNU Privacy Guard), part of OpenGP, supports public-
key cryptography.The Linux command for GnuPG is gpg or the largely
equivalent gpg2. With gpg, you can generate a public key that you share
with others and a private key you keep secret. You and others can use the
public key to encrypt files and messages which only you can decrypt using
the private key .

Using your private key, you can also attach a digital signature to

any message/file. A receiver can verify the integrity (not altered) and

mailto:pwang@monkey.cs.kent.edu:~/linux

162

LINUX OPERATING SYSTEM

NOTES

authenticity (really from the sender) of the the signed message. To do all
that, make sure you first set up GnuPG and your personal keys.

 If your Linux distribution does not already provide gpg, you can
easily install the gnupg package (Section 8.24) with either of the
following commands:

 sudo apt-get install gnupg (Ubuntu/Debian)
 sudo yum install gnupg (CentOS/Fedora)

If you like to use a GUI for gpg, install also the gpa package. However, the
command-line interface is entirely adequate.
 Setting Up GnuPG Keys
 To use gpg, you first need to generate your public-private key pair.

gpg --gen-key
You’ll be prompted to enter your choices for keytype (pick the default),
keysize (pick 2048), and a passphrase (pick something you won’t forget,
but will be very hard for anyone to guess). The passphrase is required each
time you access your private key, thus preventing others from using your
private key.
You’ll get a keyid displayed when your key pair is generated. Your keys
and other info are stored by default in the folder $HOME/.gnupg. Use

gpg --list-public-keys
 to display your public keys. For example,

 pub 1024D/FCF2F84D 2009-07-25
 uid Paul Wang (monkeykia) <pwang@cs.kent.edu>

 sub 1024g/B02C4B40 2009-07-25
The pub line says that Paul’s public master key (for signature) is a 1024-bit
DSA key with id FCF2F84D and that his public subkey (for data
encryption) is a 1024-bit ElGama key.
 To enable others to encrypt information to be delivered for your eyes only,
you should send your public keys to a public key server. The command

gpg --send-keys your keyid
 sends your public key to a default gpg key server, such as

hkp://subkeys.pgp.net
 Also, you can send your public keys to anyone by sending them an ASCII
armored file generated by

gpg --armor --export your keyid > mykey.asc
The .asc suffix simply indicates that a file is an ASCII text file. The
mykey.asc contains your key encoded using base64, a way to use 64
ASCII characters (AZ, az, 09 and +/) to encode non-ASCII files for easy
communication over networks, especially via email. The Linux base64

mailto:pwang@cs.kent.edu

163

NETWORKING INTERNET
AND THE WEB

NOTES

command performs this encoding/decoding on any file. See man base64
for more information.
 Such ASCII armored key files can be emailed to others or sent to
another computer and imported to another GnuPG key ring with a
command such as

gpg --import mykey.asc
 Also, edit your $HOME/gnupg/gpg.conf file and append the line

default-key your keyid
Encryption/Decryption with GnuPG
To encrypt a file using a public key of uid,

gpg --encrypt -r uid
 resulting in an encrypted file filename.gpg that can be sent to the target
user who is the only one that can decrypt it.
 Even if you are not going to send a file to anyone, you can still keep
secrets in that file of yours protected in case someone gains unauthorized
access to your computer account. You can

gpg --encrypt -r "your uid" filename
 rm filename

generating the encrypted filename.gpg and removing the original filename.
You can easily view the encrypted version with

nano < (gpg –decrypt filename.gpg)
 Note that the Bash process expansion is handy here.
To make maintaining an encrypted file even easier, you may configure
vi/vim to work transparently with gpg, allowing you to use vim to view
and edit clear as well as gpg encrypted files. The VIM extension tGpg
(yet another plug-in for encrypting files with gpg) is a good choice for
this purpose.
Secure Email with Mutt and GnuPG
The Linux email client mutt works well with GnuPG to support s/mime
(Secure/Multipurpose Internet Mail Extensions), allowing you to send
and receive encrypted/signed email.
Assuming that you have arranged for your keys and sent your public keys
to a key server as described in Section 7.7 and that your email
correspondents are also set up with GnuPG or some other public-key
system for their s/mime, you can easily use mutt to exchange emails
securely with them.
 Follow these steps to set up mutt.
1. Locate the file gpg.rc for mutt on your Linux.Usually, you’ll find it at
/usr/share/doc/mutt-version/gpg.rc

164

LINUX OPERATING SYSTEM

NOTES

2. Edit your mutt configuration file $HOME/.muttrc and add at the end a
line to include the gpg.rc source /usr/share/doc/mutt-version/gpg.rc
3. Import your secure email correspondents’ keys into your GnuPG key
ring. Get your email correspondent to send you an ASCII armored key
file or search for the key on the key server the --search-keys option:

 gpg --import someKey.asc
gpg --search-keys targetEmailAddress

Now, you can encrypt/sign email after composing the email message by
using the p key within mutt to select from the following options:
* encrypt
* sign
* both
 * sign as
Receiving encrypted/signed email with mutt is just a matter of following
on-screen instructions.

The popular email client Thunderbird also works with GnuPG if
you install the Enigmail extension (via the tools->add-ons).
Message Digests
 A message digest is a digital fingerprint of a message or file. Various
algorithms have been devised to take a message (file) of any length and
reduce it to a short fixed-length hash known as the digest of the original
message or file.

 These algorithms are designed to produce a different digest if any part of
the message is altered. It is almost impossible to deduce the original
message from knowledge of the digest. However, because there are an
infinite number of possible messages but only a finite number of different
digests, vastly different messages may produce the same digest.

 Message digests are therefore useful in verifying the integrity
(unalteredness) of files. When software is distributed online, a good
practice is to display a fingerprint for the file, allowing you to check the
integrity of the download and to avoid any Trojan horse code.

 MD5 is a popular algorithm producing 128-bit message digests.
An MD5 hash is usually displayed as a sequence of 32 hexadecimal

165

NETWORKING INTERNET
AND THE WEB

NOTES

digits. On Linux, you can produce an MD5 digest with the md5sum
command

md5sum filename > digestFile
 You’ll get a digestFile file containing only the hash and the name
filename. After downloading both filename and digestFile, a user can
check file integrity with md5sum digestFile
Other digest algorithms in wide use include SHA-1 and others. The Linux
command sha1sum is an alternative to md5sum.
Message Signing with GnuPG
To digitally sign a particular message, a message digest is created first.
The message digest is then encrypted using your private key to produce a
digital

signature which is attached to the message. Any receiver of a signed
message can generate a message digest from the received message and
check it against the digest obtained by decrypting the digital signature
with the signer’s public key.A match verifies the integrity and the
authenticity of the received message.
 gpg --sign file (produces signed binary file.gpg)
 gpg --clearsign file (produces signed ASCII file.asc)
 The --decrypt option automatically verifies any attached signature.
The Web
Out of all the networking applications, the Web is perhaps one of the most
important and deserves our special attention.

 There is no central control or administration of the Web. Anyone
can potentially put material on the Web and retrieve information from it.
The Web consists of a vast collection of documents that are located on
computers throughout the world. These documents are created by
academic, professional, government, and commercial organizations, as
well as by individuals. The documents are prepared in special formats and
delivered through Web servers, programs that return documents in

166

LINUX OPERATING SYSTEM

NOTES

response to incoming requests. Linux systems are often used to run Web
servers.

 Primarily, Web documents are written in Hypertext Markup
Language. Each HTML document can contain (potentially many) links to
other documents served by different servers in other locations and
therefore become part of a web that spans the entire globe. New materials
are put on the Web continuously, and instant access to this collection of
information can be enormously advantageous. As the Web grew, MIT
(Massachusetts Institute of Technology, Cambridge, MA) and INRIA (the
French National Institute for Research in Computer Science and Control)
agreed to become joint hosts of the W3 Consortium, a standards body for
the Web community.

A Web browser is a program that helps users obtain and display
information from the Web. Given the location of a target document, a
browser connects to the correct Web server and retrieves and displays the
desired document. You can click links in a document to obtain other
documents. Using a browser, you can retrieve information provided by
Web servers anywhere on the Internet.

 Typically, a Web browser, such as Firefox, supports the display of
HTML files and images in standard formats. Helper applications or plug-
ins can augment a browser to treat pages with multimedia content such as
audio, video, animation, and mathematical formulas.
Hypertext Markup Language

A Web browser communicates with a Web server through an
efficient HTTP designed to work with hypertext and hypermedia
documents that may contain regular text, images, audio, and video.
Native Web pages are written in the HTML and usually saved in files
with the .html (or .htm) suffix.

 HTML organizes Web page content (text, graphics, and other
media data) and allows hyperlinks to other pages anywhere on the Web.
Clicking such a link causes your Web browser to follow it and retrieve
another page. The Web employs an open addressing scheme that allows
links to objects and services provided by Web, email, file transfer,
audio/video, and newsgroup servers. Thus, the Web space is a superset of
many popular Internet services. Consequently, a Web browser provides
the ability to access a wide variety of information and services on the
Internet.
 URLs

 The Web uses Uniform Resource Locators (URLs) to identify
(locate) resources (files and services) available on the Internet. A URL

167

NETWORKING INTERNET
AND THE WEB

NOTES

may identify a host, a server port, and the target file stored on that host.
URLs are used, for example, by browsers to retrieve information and by
HTML to link to other resources.

 A full URL usually has the form
 scheme://server:port/pathname

 The scheme part indicates the information service type and therefore the
protocol to use. Common schemes include http (Web service), ftp (file
transfer service), mailto (email service), file (local file system), https
(secure Web service), and sftp (secure file transfer service).
For example,

sftp://pwang@monkey.cs.kent.edu/users/cs/faculty/pwang
gets you the directory list of /users/cs/faculty/pwang. This works on
Firefox and on the Linux file browser nautilus, assuming that you have
set up your SSH/SFTP.
For URLs in general, the server identifies a host and a server program.The
optional port number is needed only if the server does not use the default
port.The remainder of the URL, when given, is a file pathname. If this
pathname has a trailing / character, it represents a directory rather than a
data file. The suffix (.html, .txt, .jpg, etc.) of a data file indicates the file
type. The pathname can also lead to an executable program that
dynamically produces an HTML or other valid file to return.

Within an HTML document, you can link to another document
served by the same Web server by giving only the pathname part of the
URL. Such URLs are partially specified. A partial URL with a / prefix
(for example, /file xyz.html) refers to a file under the server root, the top-
level directory controlled by the Web server. A partial URL without a
leading / points to a file relative to the location of the document that
contains the URL in question.Thus, a simple file abc.html refers to that file
in the same directory as the current document. When building a website, it
is advisable to use a URL relative to the current page as much as possible,
making it easy to move the entire website folder to another location on
the local file system or to a different server host.
 Accessing Information on the Web

You can directly access any Web document, directory, or service
by giving its URL in the Location box of a browser. When given a URL
that specifies a directory, a Web server usually returns an index file
(typically, index.html) for that directory. Otherwise, it may return a list of
the filenames in that directory.

You can use a search engine such as Google to quickly look for
information on the Web.

mailto:ftp://pwang@monkey.cs.kent.edu/users/cs/faculty/pwang

168

LINUX OPERATING SYSTEM

NOTES

Handling Different Content Types
On the Web, files of different media types can be placed and retrieved.
The Web server and Web browser use standard content type designations
to indicate the media type of files in order to process them correctly.

The Web borrowed the content type designations from the Internet
email system and uses the same MIME (Multipurpose Internet Mail
Extensions) defined content types. There are hundreds of content types in
use today. Many popular types are associated with standard file
extensions.

 When a Web server returns a document to a browser, the content
type is indicated. The content type information allows browsers to decide
how to process the incoming content. Normally, HTML, text, and images
are handled by the browser directly. Others types such as audio and video
are usually handled by plug-ins or external helper programs.
Putting Information on the Web
Now let’s turn our attention to how information is supplied on the Web.
The understanding sheds more light on how the Web works and what it
takes to serve up information.

The Web puts the power of publishing in the hands of anyone with
a computer connected to the Internet. All you need is to run a Web server
on this machine and establish files for it to service.

Major computer vendors offer commercial Web servers with their
computer systems. Apache is a widely used open-source Web server that
is freely available from the Apache Software Foundation.

Linux systems are especially popular as Web hosting computers
because Linux is free, robust, and secure. Also, there are many useful
Web-related applications such as Apache, PHP (active Web page),
MySQL (database server), and more available free of charge.

Once a Web server is up and running on your machine, all types of files
can be served. On a typical Linux system, follow these simple steps to
make your personal Web page.

169

NETWORKING INTERNET
AND THE WEB

NOTES

1. Make a file directory in your home directory (~userid/public html) to
contain your files for theWeb. This is your personal Web directory. Make
this directory publicly accessible:

chmod a+x ~userid/public html
When in doubt, ask your system managers about the exact name to use
for your personal Web directory.
2. In your Web directory, establish a home page, usually index.html, in
HTML. The home page usually functions as an annotated table of contents.
Make this file publicly readable:

chmod a+r ~userid/public html/index.html
3. Place files and directories containing desired information in your
personal Web directory. Make each directory and each file accessible as
before. Refer to these files with links in the home page and other pages.
4. Let people know the URL of your home page, which is typically
 http://your-sever/~your-userid/
 In a Web page, you can refer to another file of yours with a simple link
containing a relative URL (), where filename can be
either a simple name or a pathname relative to the current document.
 Among the Web file formats, hypertext is critical because it provides a
means for a document to link to other documents.

What Is HTML?
HTML (the Hypertext Markup Language) is used to markup the content
of a Web page to provide page structure for easy handling by Web clients
on the receiving end. Since HTML 4.0, the language has become
standardized. XHTML (XML compatible HTML) is the current stable
version. However, a new standard HTML5 is fast approaching.

 A document written in HTML contains ordinary text interspersed
with markup tags and uses the .html filename extension. The tags mark
portions of the text as title, section header, paragraph, reference to other
documents, and so on. Thus, an HTML file consists of two kinds of
information: contents and HTML tags. A browser follows the HTML tags
to layout the page content for display. Because of this, line breaks and
extra white space between words in the content are mostly ignored. In
addition to structuring and formatting contents, HTML tags can also
reference graphics images, link to other documents, mark reference points,
generate forms or questionnaires, and invoke certain programs. Various
visual editors or page makers are available that provide a GUI for creating
and designing HTML documents. For substantial website creation
projects, it will be helpful to use integrated development environments

http://your-sever/~your-userid/

170

LINUX OPERATING SYSTEM

NOTES

such as Macromedia Dreamweaver . If you don’t have ready access to
such tools, a regular text editor can create or edit Web pages.

 An HTML tag takes the form <tag>. A begin tag such as <h1>

(level-one section header) is paired with an end tag, </h1> in this case, to
mark content in between.
The following is a sample HTML page (Ex: ex07/Fruits):
<html>
<head>
<title>A Basic Web Page</title>
</head>
<body>
<h1>Big on Fruits</h1>
<p>Fruits are good tasting and good for you ...</p>
<p> There are many varieties, ... and here is a short list: </p>

 Apples
 Bananas
 Cherries

 </body></html>
Web Hosting
Web hosting is a service to store and serve ready-made files and programs
so that they are accessible on the Web. Hence, publishing on the Web
involves
1. Designing and constructing the pages and writing the programs for a
website
2. Placing the completed site with a hosting service
Colleges and universities host personal and educational sites for students
and faculty without charge. Web hosting companies provide the service
for a fee.

171

NETWORKING INTERNET
AND THE WEB

NOTES

Commercial Web hosting can provide secure data centers (buildings), fast
and reliable Internet connections, specially tuned Web hosting computers
(mostly Linux boxes), server programs and utilities, network and system
security, daily backup, and technical support. Each hosting account
provides an amount of disk space, a monthly network traffic allowance,
email accounts, Web-based site management and maintenance tools, and
other access such as FTP and SSH/SFTP.
To host a site under a given domain name, a hosting service associates
that domain name to an IP number assigned to the hosted site. The domain
to- IP association is made through DNS servers and Web server
configurations managed by the hosting service.
Domain Registration

To obtain a domain name, you need the service of a domain name
registrar.Most will be happy to register your new domain name for a very
modest yearly fee. Once registered, the domain name is property that
belongs to the registrant. No one else can register for that particular
domain name as long as the current registrant keeps the registration in
good order.

ICANN accredits commercial registrars for common TLDs,
including .com, .net, .org, and .info. Additional TLDs include .biz, .pro,
.aero, .name, and .museum.Restricted domains (for example, .edu, .gov,
and .us) are handled by special registries (for example, net.educause.edu,
nic.gov and respective countries.
Accessing Domain Registration Data

 The registration record of a domain name is often publicly
available. The standard Internet whois service allows easy access to this
information. On Linux systems, easy access to whois is provided by the
whois command

 whois domain_name
which lists the domain registration record kept at a registrar.
For example, ‘

 whois kent.edu
 produces the following information
 Registrant:

 Kent State University
 500 E. Main St.
 Kent, OH 44242
 UNITED STATES

Technical Contact:
Administrative Contact:

172

LINUX OPERATING SYSTEM

NOTES

Bob Hart
Mgr., Network & Telecomm
Kent State University
120 Library Bldg
Kent, OH 44242
UNITED STATES
(330) 672-0385
pki-admin@kent.edu
Name Servers:
NS.NET.KENT.EDU 131.123.1.1
 DHCP.NET.KENT.EDU 131.123.252.2
 Domain record activated: 19-Feb-1987
 Domain record last updated: 17-Mar-2009
 Domain expires: 31-Jul-2009
 On Linux systems, the whois command is sometimes called
jwhois.

The DNS
DNS provides the ever-changing domain-to-IP mapping information on the
Internet.We mentioned that DNS provides a distributed database service
that supports dynamic retrieval of information contained in the name
space. Web browsers and other Internet client applications will normally
use the DNS to obtain the IP of a target host before making contact with a
server over the Internet.
There are three elements to the DNS: the DNS name space, the DNS
servers, and the DNS resolvers.
 DNS Servers
Information in the distributed DNS is divided into zones, and each zone is
supported by one or more name servers running on different hosts. A zone
is associated with a node on the domain tree and covers all or part of the
sub tree at that node. A name server that has complete information for a
particular zone is said to be an authority for that zone. Authoritative
information is automatically distributed to other name servers that provide
redundant service for the same zone. A server relies on lower level
servers for other information within its sub domain and on external
servers for other zones in the domain tree. A server associated with the
root node of the domain tree is a root server and can lead to information
anywhere in the DNS. An authoritative server uses local files to store
information, to locate key servers within and without its domain, and to
cache query results from other servers. A boot file, usually
/etc/named.boot, configures a name server and its data files.

mailto:pki-admin@kent.edu

173

NETWORKING INTERNET
AND THE WEB

NOTES

The management of each zone is also free to designate the hosts
that run the name servers and to make changes in its authoritative
database. For example, the host ns.cs.kent.edu may run a name server for
the domain cs.kent.edu.

A name server answers queries from resolvers and provides either
definitive answers or referrals to other name servers. The DNS database is
set up to handle network address, mail exchange, host configuration, and
other types of queries, with some to be implemented in the future.

The ICANN and others maintain root name servers associated with
the root node of the DNS tree. In fact, the VeriSign host a.root-servers.net
runs a root name server. Actually, the letter a ranges up to m for a total of
13 root servers currently.
 Domain name registrars, corporations, organizations, Web hosting
companies, and other Internet service providers (ISPs) run name servers to
associate IPs to domain names in their particular zones. All name servers
on the Internet cooperate to perform domain-to-IP mappings on the fly.
DNS Resolvers
A DNS resolver is a program that sends queries to name servers and
obtains replies from them. On Linux systems, a resolver usually takes the
form of a C library function. A resolver can access at least one name
server and use that name server’s information to answer a query directly
or pursue the query using referrals to other name servers.
Resolvers, in the form of networking library routines, are used to translate
domain names into actual IP addresses. These library routines, in turn, ask
prescribed name servers to resolve the domain names. The name servers to
use for any particular host are normally specified in the file
/etc/resolv.conf or /usr/etc/resolv.conf.
 The DNS service provides not just the IP address and domain name
information for hosts on the Internet.

Dynamic Generation of Web Pages
 Documents available on the Web are usually prepared and set in advance
to supply some fixed content, either in HTML or in some other format
such as plain text, PDF, or JPEG. These fixed documents are static. A

174

LINUX OPERATING SYSTEM

NOTES

Web server can also generate documents on the fly that bring these and
other advantages:
• Customizing a document depending on when, where, who, and what
program is retrieving it
• Collecting user input (with HTML forms) and providing responses to
the incoming information
• Enforcing certain policies for outgoing documents
• Supplying contents such as game scores and stock quotes, which are
changing by nature.
Dynamic Web pages are not magic. Instead of retrieving a fixed file, a
Web server calls another program to compute the document to be returned.
As you may have guessed, not every program can be used by a Web server
in this manner. There are two ways to add server-side programming:
• Load programs directly into the Web server to be used whenever the
need arises.
• Call an external program from the server, passing arguments to it (via
the program’s stdin and environment variables) and receiving the results
(via the program’s stdout) thus generated. Such a program must conform
to the Common Gateway Interface (CGI) specifications governing how
the Web server and the external program interact.

Dynamic Server Pages
The dynamic generation of pages is made simpler and more integrated with
Web page design and construction by allowing a Web page to contain
active parts that are treated by the Web server and transformed into
desired content on the fly as the page is retrieved and returned to a client
browser.
The active parts in a page are written in some kind of notation to
distinguish them from the static parts of a page. The ASP (Active Server
Pages, JSP (Java Server Pages), and the popular PHP (Hypertext
Preprocessor) are examples.
Because active pages are treated by modules loaded into the Web server,
the processing is faster and more efficient compared to CGI programs.
Active page technologies such as PHP also provide form processing,

175

NETWORKING INTERNET
AND THE WEB

NOTES

HTTP sessions, and easy access to databases. Therefore, they offer
complete server-side support for dynamic Web pages.
Both CGI and server pages can be used to support HTML forms, the
familiar fill-out forms you often see on the Web.
HTTP Briefly
On the Web, browser-server communication follows HTTP. A basic
understanding of HTTP is important for Linux programmers because
Linux systems are very popular Web server hosts.
The start of HTTP traces back to the beginning of the Web in the early
1990s. HTTP/1.0 was standardized early in 1996. Improvements and new
features have been introduced and HTTP/1.1 is now the stable version.
Here is an overview of an HTTP transaction:
1. Connection—A browser (client) opens a connection to a server.
2. Query—The client requests a resource controlled by the server.
3. Processing—The server receives and processes the request.
4. Response—The server sends the requested resource back to the client.
5. Termination—The transaction is finished, and the connection is closed
unless another transaction takes place immediately between the client and
server.
HTTP governs the format of the query and response messages.

The header part is textual, and each line in the header should end in return
and newline, but it may end in just newline.
 The initial line identifies the message as a query or a response.
• A query line has three parts separated by spaces: a query method name,a
local path of the requested resource, and an HTTP version number.

For example,
GET /path/to/file/index.html HTTP/1.1
 or
POST /path/script.cgi HTTP/1.1

The GET method requests the specified resource and does not allow a
message body. A GET method can invoke a server-side program by
specifying the CGI or active-page path, a question mark, and then a query
string:

GET/cgi-bin/newaddr.cgi?name=value1&email=value2 HTTP/1.1

176

LINUX OPERATING SYSTEM

NOTES

Host: monkey.cs.kent.edu
Unlike GET, the POST method allows a message body and is designed to
work with HTML forms for collecting input from Web users.
 • A response (or status) line also has three parts separated by spaces: an
HTTP version number, a status code, and a textual description of the
status. Typical status lines are

HTTP/1.1 200 OK
for a successful query or
HTTP/1.1 404 Not Found
 when the requested resource cannot be found.

• The HTTP response sends the requested file together with its content type
and length (optional) so the client will know how to process it.
A Real HTTP Experience
Let’s manually send an HTTP request and get an HTTP response. To do
that we will use the nc commnad. The command nc provides command-
line (and scripting) access to the basic TCP and UDP and therefore
allows you to make any TCP connections or send any UDP packets. Such
abilities are usually reserved to programs at the C-language level that set
up sockets for networking.

For example, the simple Bash pipeline (Ex: ex07/poorbr.sh)

echo $ ´GET /WEB/test.html HTTP/1.0\n ´|
nc monkey.cs.kent.edu 80

retrieves the Web page monkey.cs.kent.edu/WEB/test.html. In this
example, we applied the Bash string expansion.
Note the HTTP get request asks for the file /WEB/test.html under the
document root folder managed by the Web server on monkey. The request
is terminated by an empty line, as required by the HTTP protocol.
Try this and you’ll see the result display.

 HTTP/1.1 200 OK
Date: Tue, 07 Apr 2009 19:45:03 GMT
Server: Apache/2.0.54 (Fedora)
X-Powered-By: PHP/5.0.4
Cache-Control: max-age=86400
Expires: Wed, 08 Apr 2009 19:45:03 GMT
Vary: Accept-Encoding
Content-Length: 360
Connection: close
Content-Type: text/html; charset=UTF-8

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 //EN">

177

NETWORKING INTERNET
AND THE WEB

NOTES

<html> AND THE REST OF THE HTML PAGE
</html>

As you can see from the HTTP response, the Web server on monkey is
Apache version 2 running under Fedora, a Linux system.
For downloading from the Web, you don’t need to rely on our little
pipeline. The wget command takes care of that need nicely. Wget
supports HTTP, HTTPS, and FTP protocols and can download single
files or follow links in HTML files and recursively download entire
websites for offline viewing. The wget command can continue to work
after you log out so you can download large amounts of data without
waiting.
For More Information
• IPv6 is the next-generation Internet protocol. See www.ipv6.org/ for an
overview.
• The official website for Gnu Privacy Guard is www.gnupg.org, and for
OpenSSH, is www.openssh.com.
 • Public-Key Cryptography Standards (PKCS) can be found at RSA
Laboratories (www.rsa.com/rsalabs).
• HTML5 is the new and coming standard for HTML. See the specification
at W3C.
• The DNS is basic to keeping services on the Internet and Web running.
Find our more about DNS at www.dns.net/dnsrd/docs/.
• HTTP is basic to the Web. See RFC 1945 for HTTP 1.0 and RFC 2068
for HTTP 1.1.
Review & Self Assessment Question:
Q1- What is Computer Network?
Q2- Define the term Internet?
Q3- What do you mean by Domain Name System?
Q4-What do you mean by Remote File Synchronization?
Q5-What is Message Digests?
Q6- What is DNS Server? Explain it.
Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

http://www.ipv6.org/
http://www.gnupg.org,
http://www.openssh.com.
http://www.rsa.com/rsalabs).
http://www.dns.net/dnsrd/docs/.

178

LINUX OPERATING SYSTEM

NOTES

UNIT: 8- PROGRAMMING
IN LINUX

Contents
 Introduction
 Command Line Argument
 The GCC Compiler
 The C Compiler
 Linking and Loading
 The C Library
 File Updating
 Debugging with GDB
 Review & Self Assessment Question
 Further Readings

Introduction
With a basic understanding of commands, Shell usage and programming,
structure of the file system, networking, and Web hosting.
The Linux system and many of its commands are written in the C
language.C is a compact and efficient general-purpose programming
language that has evolved together with UNIX and Linux. Thus, C is
regarded as the native language for Linux. The portability of Linux is
due, in large part, to the portability of C.

Because of its importance, C has been standardized by the
American National Standards Institute (ANSI) and later by the
International Organization for Standardization (ISO). The latest standard
is known as ISO C99. The C99 standard specifies language constructs and
a Standard C Library API (Application Programming Interface) for
common operations, such as I/O (input/ output) and string handling. Code
examples in this book are compatible with ISO C99.
On most Linux distributions, you’ll find
 • gcc (or g++)—The compiler from GNU that compiles C (or C++)
programs. These include support for ISO C99 and ISO C++ code.
• glibc—The POSIX2-compliant C library from GNU. A library keeps
common code in one place to be shared by many programs. The glibc
library package contains the most important sets of shared libraries: the
standard-compliant C library, the math library, as well as national
language (locale) support.

179

PROGRAMMING
IN LINUX

NOTES

On Linux, it is easy to write a C program, compile it with gcc, and run the
resulting executable. For creating and editing short programs, such as
examples in this book, simple text editors like gedit and nano are
fine.More capable editors such as vim and emacs have C editing modes for
easier coding. Integrated Development Environments (IDEs) for C/C++
on Linux, such as kdevelop, Anjula, and Borland C++, are also available
to manage larger programming projects.
 In this and the next two chapters, we will look at facilities for
programming at the C-language level and write C code to perform
important operating system tasks including I/O, file access, piping,
process control, inter-process communications, and networking. The
material presented will enable you to implement new commands in C, as
well as control and utilize the Linux kernel through its C interface.
A collection of basic topics that relates to writing C code under Linux is
explored in this chapter:

 • Command-line argument conventions
 • Actions of the C compiler
 • Standard C Libraries
 • Use and maintenance of program libraries
 • Error handling and recovery
 • Using the gdb debugger

Command-Line Arguments
Commands in Linux usually are written either as Shell scripts or as C
programs. Arguments given to a command at the Shell level are passed as
character strings to the main function of a C program. A main function
expecting arguments is normally declared as follows:

 int main(int argc, char *argv[])
The parameter argc is an integer. The notation

 char *argv[]
declares the formal array parameter argv as having elements of type char *
(character pointer). In other words, each of the array elements argv[0],
argv[1], ..., argv[argc-1] points to a character string. The meanings of the
formal arguments argc and argv are as follows:
argc—The number of command-line arguments, including the command
name
 argv[n]—A pointer to the nth command-line argument as a character
string If the command name is cmd, and it is invoked as

cmd arg1 arg2
 then
argc is 3

180

LINUX OPERATING SYSTEM

NOTES

argv[0] points to the command name cmd
argv[1] points to the string arg1
argv[2] points to the string arg2
argv[3] is 0 (NULL)

The parameters for the function main can be omitted (int main()) if they
are not needed.
 Now let’s write a program that receives command-line arguments
.To keep it simple, all the program does is echo the command line
arguments to standard output.

 /****** the echo command ******/
 #include <stdlib.h>
 #include <stdio.h>
 int main(int argc, char *argv[])

{int i = 1; /* begins with 1 */
 while (i < argc)

{printf("%s", argv[i++]); /* outputs string */
 printf(" "); /* outputs SPACE */
}printf("\n"); /* terminates output line */
 return EXIT_SUCCESS; /* returns exit status */
}

The program displays each entry of argv except argv[0], which is actually
the command name itself. The string format %s of printf is used. To
separate the strings, the program displays a space after each argv[i], and
the last argument is followed by a newline.
 Exit Status
Note that main is declared to return an int and the last statement in the
preceding example returns a constant defined in <stdlib.h>

 return EXIT_SUCCESS;
When a program terminates, an integer value, called an exit status, is
returned to the invoking environment (a Shell, for example) of the
program. The exit status indicates, to the invoker of the program, whether
the program executed successfully and terminated normally. An exit status
EXIT_SUCCESS (0 on Linux) is normal, while EXIT_FAILURE (1 on
Linux), or any other small positive integer, indicates abnormal
termination. At the Linux Shell level, for example, different actions can
be taken depending on the exit status (value of $?) of a command. For a C
program, the return value of main, or the argument to a call to exit,
specifies the exit status. Thus, main should always return an integer exit
status even though a program does not need the quantity for its own
purposes.

181

PROGRAMMING
IN LINUX

NOTES

Compile and Execute
To compile C programs, use gcc. For example,
 gcc echo.c -o myecho
Here, the executable file produced is named myecho, which can be run
with

 myecho To be or not to be
 producing the display
To be or not to be The argv[0] in this case is myecho.
The command gcc runs the GNU C Compiler (GCC).

Linux Command Argument Conventions
Generally speaking, Linux commands use the following convention for
specifying arguments:

command [options] [files]
Options are given with a single or double hyphen (-) prefix.
-char
--word

where char is a single letter and word is a full word. For example, the ls
command has the single-letter -F and the full-word --classify option. A
command may take zero or more options. When giving more than one
option, the single-letter options sometimes can be combined by preceding
them with a single -.

For example,
ls -l -g -F
can be given alternatively as
ls –lgF

Some commands such as ps and tar use options, but do not require a
leading hyphen.Other options may require additional characters or words
to complete the specification. The -f (script file) option of the sed
command is an example.
A file argument can be given in any one of the three valid filename forms:
simple name, relative pathname, and full pathname. A program should not
expect a restricted filename or make any assumptions about which form
will be supplied by a user.
The GCC Compiler
To program in C, it is important to have a clear idea of what the C
compiler does and how to use it. A compiler not only translates programs
into machine code to run on a particular computer, it also takes care of
arranging suitable run-time support for the program by providing I/O, file
access, and other interfaces to the operating system. Therefore, a compiler

182

LINUX OPERATING SYSTEM

NOTES

is not only computer hardware specific, but also operating system
specific.
On Linux, the C compiler will likely be GCC, which is part of the GNU
compiler collection. The C compiler breaks the entire compilation process
into five phases

1. Preprocessing—The first phase is performed by the cpp (C
preprocessor) program (or gcc -E). It handles constant definition, macro
expansion,file inclusion, conditionals, and other preprocessor directives.
2. Compilation—Taking the output of the previous phase as input, the
compilation phase performs syntax checking, parsing, and assembly code
(.s file) generation.
3. Optimization—This optional phase specializes the code to the
computer’s hardware architecture and improves the efficiency of the
generated code for speed and compactness.
 4. Assembly—The assembler program as takes .s files and creates object
(.o) files containing binary code and relocation information to be used by
the linker/loader.
5. Linking—The collect2/ld program is the linker/loader which combines
all object files and links in necessary library subroutines as well as runtime
support routines to produce an executable program (a.out).
The gcc command can automatically execute all phases or perform only
designated phases.
The gcc Command
 Because of the close relationship between C and Linux, the gcc command
is a key part of any Linux system. The gcc supports traditional as well as
the standard ISO C99.
Typically, the gcc command takes C source files (.c and .h), assembly
source files (.s), and object files (.o) and produces an executable file,
named a.out by default. The compiling process will normally also
produce a corresponding object file (but no assembly file) for each given
source file.
Once compiled, a C program can be executed. The command name is
simply the name of the executable file (if it is on the command search

183

PROGRAMMING
IN LINUX

NOTES

PATH). For all practical purposes, an executable file is a Linux
command.
Options for gcc
 You can control the behavior of gcc by command-line options. A select
subset of the available options is described here.
Please note that some options, such as -D and -I, have no space between
the option and the value that follows it.
-E Performs preprocessing only, outputs to stdout.
-S Produces assembly code files (.s).
-c Produces object (.o) files. No linking or a.out is done. This

option is used for separate compilation of component
modules in a program package.

g or -ggdb Includes debugging information in object/executable code
for gdb and other debuggers.

-o filename Names the executable file filename instead of a.out.
-O,-O2,-O3 Activates the optimization phase and performs level 1, 2, or

3 optimization. The generated code will have increasingly
improved speed and, most likely, also a smaller size.
Optimization algorithms slow the compiler down
considerably. Apply this option only after your code has
been tested and debugged and the code is ready for
production use

-llibname Specifies libname as a library file to use when linking and
loading the executable file. This option is passed by gcc to
the linker/loader.

-Ldir Adds dir to the library search path.
-std=standard Uses the given standard for C such as ansi or c99.
-v Displays the names and arguments of all subprocesses

invoked in the different phases of gcc.
-Dname=str Initializes the cpp macro name to the given string str. This

command-line option is equivalent to inserting #define
name str at the beginning of a source file. If =str is omitted,
name is initialized to 1.

-Idir Adds the directory dir to the directory list that gcc searches
for #include files. The compiler searches first in the
directory containing the source file, then in any directories
specified by the -I option, and then in a list of standard
system directories. Multiple -I options establish an ordered
sequence of additional #include file directories.

184

LINUX OPERATING SYSTEM

NOTES

-pg Prepares to generate an execution profile to be used with
the Linux gprof utility.

The C Preprocessor
The C preprocessor (the cpp command) performs the first phase of the
compilation process. The preprocessor provides important facilities that are
especially important for writing system programs. Directives to the C
preprocessor begin with the character # in column one. The directive

 #include
is used to include other files into a source file before actual compilation
begins. The included file usually contains constant, macro, and data
structure definitions that usually are used in more than one source code
file. The directive

 #include "filename"
instructs cpp to include the entire contents of filename . If the filename is
not given as a full pathname, then it is first sought in the directory where
the source code containing the #include statement is located; if it is not
found there, then some standard system directories are searched. If you
have header files in non-standard places, use the -I option to add extra
header search directories. The directive

 #include <filename>
has the same effect, except the given filename is found in standard system
directories. One such directory is /usr/include. For example, the standard
header file for I/O is usually included by

 #include <stdio.h>
 at the beginning of each source code file. As you will see, an important
part of writing a system program is including the correct header files
supplied by Linux in the right order. The cpp directive #define is used to
define constants and macros. For example, after the definitions

 #define TRUE 1
#define FALSE 0
#define TABLE SIZE 1024

these names can be used in subsequent source code instead of the actual
numbers. The general form is

 #define identifier token . . .
 The preprocessor will replace the identifier with the given tokens in the
source code. If no tokens are given, identifier is defined to be 1. Macros
with parameters also can be defined using the following form:

 #define identifier(arg1, arg2, ...) token ...
 For example,
 #define MIN(x,y) ((x) > (y) ? (y) : (x))

185

PROGRAMMING
IN LINUX

NOTES

defines the macro MIN, which takes two arguments. The macro call
 MIN(a + b, c - d)
 is expanded by the preprocessor into
 ((a+b) > (c-d) ? (c-d) : (a+b))

The right-hand side of a macro may involve symbolic constants or another
macro. It is possible to remove a defined identifier and make it undefined
by

 #undef identifier
The preprocessor also handles conditional inclusion, where sections of
source code can be included in or excluded from the compiling process,
depending on certain conditions that the preprocessor can check.
Conditional inclusion is specified in the general form

#if-condition
 source code lines A

 [#else
 source code lines B]
 #endif

If the condition is met, source code A is included; otherwise, source code
B (if given) is included.
Conditional inclusion can be used to include debugging code with
something like

 #ifdef DEBUG
 printf(...)
 #endif

To activate such conditional debug statements, you can either add the line
 #define DEBUG

 at the beginning of the source code file or compile the source code file
with

 gcc -DDEBUG file ‘
Preventing Multiple Loading of Header Files
In larger C programs, it is common practice to have many source code and
header files.The header files often have #include lines to include other
headers.This situation often results in the likelihood of certain header files
being read more than once during the preprocessing phase.This is not only
wasteful,but can also introduce preprocessing errors.To avoid possible
multiple inclusion, a header file can be written as a big conditional

186

LINUX OPERATING SYSTEM

NOTES

inclusion construct.
 /* A once only header file xyz.h */

#ifndef __xyz_SEEN__
#define __xyz_SEEN__
/* the entire header file*/
 .
 .
 .
 #endif /* __xyz_SEEN__ */

The symbol __xyz_SEEN__ becomes defined once the file xyz.h is read
by cpp (Ex: ex09/gcd.h). This fact prevents it from being read again due
to the #ifndef mechanism. This macro uses the underscore prefix and
suffix to minimize the chance of conflict with the other macros or constant
name.
Compilation
The compiling phase takes the output of the preprocessing phase and
performs parsing and code generation. If a -O option is given, then the
code generation invokes code optimization routines to improve the
efficiency of the generated code. The output of the compilation phase is
assembly code.
Assembly
Assembly code is processed by the assembler as to produce relocatable
object code (.o).
Linking and Loading
Linking/loading produces an executable program (the a.out file) by
combining user-supplied object files with system-supplied object modules
contained in libraries as well as initialization code needed. GCC uses
collect2 to gather all initialization code from object code files and then
calls the loader ld to do the actual linking/loading. The collect2/ld program
treats its command-line arguments in the order given. If the argument is an
object file, the object file is relocated and added to the end of the
executable binary file under construction. The object file’s symbol table
is merged with that of the binary file. If the argument is the name of a
library, then the library’s symbol table is scanned in search of symbols that
match undefined names in the binary file’s symbol table. Any symbols
found lead to object modules in the library to be loaded. Such library
object /bin/bash: inking: command not found the same way. Therefore, it
is important that a library argumentbe given after the names of object files
that reference symbols defined in the library.

187

PROGRAMMING
IN LINUX

NOTES

To form an executable, run-time support code (such as crt1.o,
crti.o,crtbegin.o, crtend.o in /usr/lib/ or /usr/lib64/) and C library code
(such as libgcc.a) must also be loaded. The correct call to collect2/ld is
generated by gcc.
After all object and library arguments have been processed, the binary
file’s symbol table is sorted, looking for any remaining unresolved
references. The final executable module is produced only if no unresolved
references remain.
 There are a number of options that collect2/ld takes. A few important
ones are listed:
-lname Loads the library file libname.a, where name is a character

string. The loader finds library files in standard system
directories (normally /lib, /usr/lib, and /usr/local/lib) and
additional directories specified by the -L option. The -l
option can occur anywhere on the command line, but
usually occurs at the end of a gcc or collect2/ld command.
Other options must precede filename arguments.

-Ldir Adds the directory dir in front of the list of directories to
find library files.

-s Removes the symbol table and relocation bits from the
executable file to save space. This is used for code already
debugged.

 -o name Uses the given name for the executable file, instead of a.out.
The C Library

 The C library provides useful functions for many common tasks such as
I/O and stringn handling. In the given table lists frequently used POSIX-
compliant libraries. However, library functions do depend on system calls
to obtain operating system kernel services.

An application program may call the library functions or invoke system
calls directly to perform tasks. The above figure shows the relations among
the Linux kernel, system calls, library calls, and application programs in C.
By using standard library calls as much as possible, a C application
program can achieve more system independence.

188

LINUX OPERATING SYSTEM

NOTES

The program in next figure implements a command lowercase, which
copies all characters from standard input to standard output while mapping
(a one-to-one transformation) all uppercase characters to lowercase ones.
The I/O routines getchar and putchar are used (Ex: ex09/lowercase.c).The
C I/O library uses a FILE structure to represent I/O destinations referred to
as C streams. A C stream contains information about the open file, such as
the buffer location, the current character position in the buffer, the mode of
access, and so on.

As mentioned before, when a program is started under Linux, three I/O
streams are opened automatically. In a C program, these are three standard
C stream pointers stdin (for standard input from your keyboard), stdout
(for standard output to your terminal window), and stderr (for standard
error to your terminal window). The header file <stdio.h> contains
definitions for the identifiers stdin, stdout, and stderr. Output to stdout is
buffered until a line is terminated (by \n), but output to stderr is sent
directly to the terminal window without buffering. Standard C streams
may be redirected to files or pipes. For example,

 putc(c, stderr)
 writes a character to the standard error. The routines getchar and putchar
can be defined as

 #define getchar() getc(stdin)
 #define putchar(c) putc(c, stdout)

I/O to Files
The I/O library routine fopen is used to open a file for subsequent I/O:

FILE *fopen(char *filename, char *access_mode)

189

PROGRAMMING
IN LINUX

NOTES

This function prototype describes the arguments and return value of fopen.
We will use the prototype notation to introduce C library and Linux system
calls.
 To open the file passed as the second command-line argument for reading,
for example, you would use

 FILE *fp = fopen(argv[2], "r");
The allowable access modes are listed in the next table The file is assumed
to be a text file unless the mode letter b is given after the initial mode
letter (r, w or a) to indicate a binary file. I/O with binary files can be very
efficient for certain applications, as we will see in the next section. Now
let’s explain how to use the update modes.

Because the C stream provides its own buffering, sometimes there is a
need to force any output data that remains in the I/O buffer to be sent out
without delay. For this the function

 int fflush(FILE *stream)
 is used. This function is not intended to control input buffering.
File Updating
When the same file is opened for both reading and writing under one of the
modes r+, w+, and a+, the file is being updated in place; namely, you are
modifying the contents of the file. In performing both reading and writing
under the update mode, care must be taken when switching from reading
to writing and vice versa. Before switching either way, an fflush or a
filepositioning function (fseek, for example) must be called on the stream.
These remarks will become clear as we explain how the update modes
work.
The r+ mode is most efficient for making one-for-one character
substitutions in a file. Under the r+ mode, file contents stay the same if
not explicitly modified. Modification is done by moving a file position
indicator (similar to a cursor in a text editor) to the desired location in the
file and writing the revised characters over the existing characters already
there. A lowercase command based on file updating can be implemented
by following the steps:

1. Open the given file with the r+ mode of fopen.
2. Read characters until an uppercase letter is encountered.
3. Overwrite the uppercase letter with the lowercase letter.

190

LINUX OPERATING SYSTEM

NOTES

4. Repeat steps 2 and 3 until end-of-file is reached.
 /******** lower.c ********/
#include <stdlib.h>
 #include <stdio.h>
#include <ctype.h>
#define SEEK_SET 0
 int main(int argc, char *argv[])
 {FILE *update;
int fpos; /* read or write position in file */
 char c;
 if ((update = fopen(argv[1], "r+")) == NULL)
 { fprintf(stderr, "%s: cannot open %s for updating\n",
 argv[0], argv[1]);
exit(EXIT_FAILURE);
 }
 while ((c = fgetc(update)) != EOF)
 { if (isupper(c))
{ ungetc(c, update); /* back up 1 char (a) */
fpos = ftell(update); /* get current pos (b) */
 fseek(update, fpos, SEEK_SET); /* pos for writing (c) */
 fputc(tolower(c), update);
 fpos = ftell(update);
fseek(update, fpos, SEEK_SET); /* pos for reading (d) */
 }
 } /* (e) */
fclose(update);
 return EXIT_SUCCESS;
}

After detecting an uppercase character, the file position is on the next
character to read. Thus, we need to reposition the write indicator to the
previous character in order to overwrite it. This is done here by backing up
one character with ungetc (line a), recording the current position (line b),
and setting the write position with fseek (line c) before putting out the
lowercase character. Having done that, we can continue to process the
rest of the file. However, we must set the read position with fseek (line d)
before switching back to reading again.
The general form of the file position setting function fseek is

 int fseek(FILE *stream, long offset, int origin)
The function normally returns 0, but returns -1 for error. After fseek, a
subsequent read or write will access data beginning at the new position.

191

PROGRAMMING
IN LINUX

NOTES

For a binary file, the position is set to offset bytes from the indicated
origin, which can be one of the symbolic constants

 SEEK_SET (usually 0) the beginning of the file
 SEEK_CUR (usually 1) the current position
 SEEK_END (usually 2) the end of the file

For a text stream, offset must be zero or a value returned by ftell, which
gives the offset of the current position from the beginning of the file.
After end-of-file is reached, any subsequent output will be appended at the
end of the file. Thus, if more output statements were given after (line e) in
our example, the output would be appended to the file.
 The w+ mode is used for more substantial modifications of a file. A file,
opened under w+, is read into a memory buffer and then reduced to an
empty file. Subsequent read operations read the buffer and write
operations add to the empty file. The mode a+ also gives you the ability
to read and write the file, but positions the write position initially at the
end of the file.
I/O Redirection
The standard library function freopen

 FILE *freopen(char *file, char *mode, FILE * stream)
 connects an existing stream, such as stdin, stdout, or stderr, to the given
file. Basically, this is done by opening the given file as usual but, instead
of creating a new stream, assigning stream to it. The original file attached
to stream is closed. For example, the statement

 freopen("mydata", "r", stdin);
causes your C program to begin reading "mydata" as standard input. A
successful freopen returns a FILE *.

For example, after the previous freopen, the code
char c = getc(stdin);

 reads the next character from the file mydata instead of the keyboard.
A similar library function fdopen connects a file descriptor , rather than a
stream, to a file in the same way.
A Linux system provides the Standard C Library, the X Window System
library, the networking library, and more. The available library functions
are all described in section 3 of the man pages.
Creating Libraries and Archives
We have mentioned that collect2/ld also links in libraries while
constructing an executable binary file. Let’s take a look at how a library
is created and maintained under the Linux system. Although our
discussion is oriented toward the C language and C functions, libraries for
other languages under Linux are very similar.

192

LINUX OPERATING SYSTEM

NOTES

 A subroutine library usually contains the object code versions of functions
that are either of general interest or of importance for a specific project.
The idea is to avoid reinventing the wheel and to gather code that has
already been written, tested, and debugged in a program library, just like
books in an actual library, for all to use. Normally, the library code is
simply loaded together with other object files to form the final executable
program.
 On Linux, a library of object files is actually one form of an archive file,
a collection of several independent files arranged into the archive file
format. A magic number identifying the archive file format is followed by
the constituent files, each preceded by a header. The header contains such
information as filename, owner, group, access modes, last modified time,
and so on. For an archive of object files (a library), there is also a table of
contents in the beginning identifying what symbols are defined in which
object files in the archive. The command ar is used to create and maintain
libraries and archives.
The general form of the ar command is

 ar key [position] archive-name file ...
 Ar will create, modify, display, or extract information from the given
archivename, depending on the key specified. The name of an archive file
normally uses the .a suffix. Some more important keys are listed here.

r To put the given files into the new or existing
archive file, archivename. If a file is already in the
archive, it is replaced. New files are appended at
the end.

q To quickly append the given files to the end of a
new or existing archive file, archive-name, without
checking whether a file is already in the archive.
This is useful for creating a new archive and to add
to a very large archive.

ru Same as r, except existing files in the archive are
only replaced if they are older than the
corresponding files specified on the command line.

ri or ra After ri or ra, a position argument must be supplied,
which is the name of a file in the archive. These are
the same as r, except new files are inserted before
(ri) or after (ra) the position file in the archive.

 t To display the table of contents of the archive file.
 x To extract the named files in the archive into the

current directory.This, of course, will result in one

193

PROGRAMMING
IN LINUX

NOTES

or several independent files. If no list of names is
given, all files will be extracted.

For example, the command
ar qcs libme.a file1.o file2.o file3.o

creates the new archive file libme.a by combining the given object files.
The c modifier tells ar to create a new archive and the s modifier causes a
table of contents (or index) to be included.
The command

ar tv libme.a
displays the table of contents of libme.a.

rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file1.o
rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file2.o
rw-rw-r-- 0/0 1240 Jul 9 16:18 2009 file3.o

If you do not wish or have permission to locate the libme.a file in a system
library directory, you can put the library in your own directory and give the
library name explicitly to gcc for loading. For example,

 gcc -c myprog.c
 gcc myprog.o libme.a

Note that myprog.c needs to include the header for libme.a, say, me.h, in
order to compile successfully.
 Error Handling in C Programs
An important aspect of system programming is foreseeing and handling
errors that may occur during program execution. Many kinds of errors can
occur at run time. For example, the program may be invoked with an
incorrect number of arguments or unknown options. A program should
guard against such errors and display appropriate error messages. Error
messages to the user should be written to the stderr so that they appear on
the terminal even if the stdout stream has been redirected. For example,

fprintf (stderr, "%s: cannot open %s\n", argv[0], argv[i]);

alerts the user that a file supplied on the command line cannot be opened.
Note that it is customary to identify the name of the program displaying the
error message. After displaying an error message, the program may
continue to execute, return a particular value (for example, -1), or elect to
abort. To terminate execution, the library routine exit(status);is used,
where status is of type int. For normal termination, status should be zero.
For abnormal terminal, such as an error, a positive integer status (usually
1) is used. The routine exit first invokes fclose on each open file before
executing the system call exit, which causes immediate termination

194

LINUX OPERATING SYSTEM

NOTES

without buffer flushing.A C program may use exit(status); directly if
desired.
Errors from System and Library Calls
A possible source of error is failed system or library calls. A system call is
an invocation of a routine in the Linux kernel. Linux provides many
system calls, and understanding them is a part of learning Linux system
programming. When a system or library call fails, the called routine will
normally not terminate program execution. Instead, it will return an invalid
value or set an external error flag. The error indication returned has to be
consistent with the return value type declared for the function. At the same
time, the error value must not be anything the function would ever return
without failure. For library functions, the standard error values are
 • EOF—The error value EOF, usually -1, is used by functions normally
returning a non-negative number.
 • NULL—The error value NULL, usually 0, is used by functions normally
returning a valid pointer (non-zero).
 • nonzero—A non-zero error value is used for a function that normally
returns zero.
It is up to your program to check for such a returned value and take
appropriate actions. The following idiom is in common use:

 if ((value = call(...)) == errvalue)
{ /* handle error here */
/* output any error message to stderr */
 }

Failed Linux system calls return similar standard errors -1, 0, and so on.
To properly handle system and library call errors, the header file
<errno.h> should be included.

#include <errno.h>
This header file defines symbolic error numbers and their associated
standard error messages.

The external variable errno is set to one of these error numbers after a
system or library call failure, but it is not cleared after a successful call.
This variable is available for your program to examine. The
system/library call

195

PROGRAMMING
IN LINUX

NOTES

 perror(const char *s)
 can be used to display the standard error message. The call perror(str)
outputs to standard error:

1. The argument string str
2. The colon (´: ´) character
3. The standard error message associated with the current value
of errno
4. A newline (´\n ´) character

The string argument given to perror is usually argv[0] or that plus the
function name detecting the error.
Sometimes it is desirable to display a variant of the standard error message.
For this purpose, the error messages can be retrieved through the standard
library function

char *strerrpr(int n) /* obtain error message string */
which returns a pointer to the error string associated with error n. Also,
there are error and end-of-file indicators associated with each I/O stream.
Standard I/O library functions set these indicators when error or end-of-file
occurs. These status indicators can be tested or set explicitly in your
program with the library functions

int ferror(FILE *s) returns true (non-zero) if error indicator is set
int feof(FILE *s) returns true if eof indicator is set
void clearerr(FILE *s) clears eof and error indicators

Error Indications from Mathematical Functions
The variable errno is also used by the standard mathematical functions to
indicate domain and range errors. A domain error occurs if a function is
passed an argument whose value is outside the valid interval for the
particular function. For example, only positive arguments are valid for the
log function. A range error occurs when the computed result is so large or
small that it cannot be represented as a double.
When a domain error happens, errno is set to EDOM, a symbolic constant
defined in <errno.h>, and the returned value is implementation dependent.
On the other hand, when a range error takes place, errno is set to
ERANGE, and either zero (underflow) or HUGE_VAL (overflow) is
returned.
Error Recovery
A run-time error can be treated in one of three ways:

 1. Exiting—Display an appropriate error message, and terminate
the execution of the program.
2. Returning—Return to the calling function with a well-defined
error value.

196

LINUX OPERATING SYSTEM

NOTES

3. Recovery—Transfer control to a saved state of the program in
order to continue execution. ‘

The first two methods are well understood. The third, error recovery, is
typified by such programs as vi, which returns to its top level when errors
occur. Such transfer of control is usually from a point in one function to a
point much earlier in the program in a different function. Such non-local
control transfer cannot be achieved with a goto statement which only
works inside a function. The two standard library routines setjmp and
longjmp are provided for non-local jumps. To use these routines, the
header file setjmp.h must be included.

 #include <setjmp.h>
The routine setjmp is declared as
int setjmp(jmp buf env) /* set up longjmp position */

which,when called, saves key data defining the current program state in the
buffer env for possible later use by longjmp. The value returned by the
initial call to setjmp is 0. The routine longjmp uses the saved env to throw
control flow back to the setjmp statement.

void longjmp(jmp buf env, int val)

When called with a saved env and an integer val (must be nonzero),
longjmp will restore the saved state env and cause execution to resume as
if the original setjmp call has just returned the value val. For this
backtracking to happen correctly, longjmp must be called from a function
in a sequence of nested function calls leading from the function that
invoked setjmp. In other words, setjmp establishes env as a non-local
goto label, and longjmp is used to transfer control back to the point
marked by env.
 After the longjmp operation, all accessible global and local data have
values as of the time when longjmp was called. The ANSI standard states
that data values are not saved by the setjmp call.
 Because of the way it works, setjmp can either stand alone or occur in the
test condition part of if, switch, or while, and so on. The following is a
simple example that shows how to use setjmp and longjmp.

#include <stdio.h>
#include <errno.h>
 #include <setjmp.h>
jmp_buf env;

197

PROGRAMMING
IN LINUX

NOTES

void recover(int n)
{ /* adjust values of variables if needed */
 longjmp(env, n);
}
 void func_2(int j)
 { /* normal processing */
recover(j);
}
void func_1(int i)
{ /* normal processing */
func_2(i * 2);
 }
 int main()
{ /* initialize and set up things here */
 /* then call setjmp */
 int err=0;
 if ((err = setjmp(env)) != 0)
 { /* return spot for longjmp */
 /* put any adjustments after longjmp here */
 printf("Called longjmp\n");
 printf("Error No is %d\n", err);
 return err;
 }
 /* proceed with normal processing */
 printf("After initial setjmp()\n");
 printf("Calling func_1\n");
 func_1(19);
 }

In this example, the function main sets up the eventual longjmp called by
the function recover. Note that recover never returns. It is possible to mark
several places env1, env2,... with setjmp and use longjmp to transfer
control to one of these marked places.
 In addition to error recovery, a non-local jump can also be used to return
a value directly from a deeply nested function call. This can be more
efficient than a sequence of returns by all the intermediate functions.
However, nonlocal control transfers tend to complicate program structure
and should be used only sparingly.
Debugging with GDB
While the C compiler identifies problems at the syntax level, you still
need a good tool for debugging at run time. GDB, the GNU debugger, is a

198

LINUX OPERATING SYSTEM

NOTES

convenient utility for source-level debugging and controlled execution of
programs. Your Linux distribution will usually have it installed. The
command is gdb.
GDB can be used to debug programs written in many source languages
such as C, C++, and f90, provided that the object files have been compiled
to contain the appropriate symbol information for use by gdb. This means
that you use the -g or better the -ggdb option of gcc.
Insight (sourceware.org/insight/) is a graphical user interface (GUI) front
end for GDB. You can download and install it on your Linux if you prefer
a window-menu–oriented environment for using gdb.
Other common debuggers include dbx and sdb. These are generally not as
easy to use as gdb. We will describe how to use gdb to debug C programs.
Once learned, gdb should be used as a routine tool for debugging
programs. It is much more efficient than inserting fprintf lines in the
source code. The tool can be used in the same way for many other
programming languages.
Interactive Debugging
GDB provides an interactive debugging environment and correlates run-
time activities to statements in the program source code. This is why it is
called a source-level debugger. Debugging is performed by running the
target program under the control of the gdb tool. The main features of gdb
are listed below.
1. Source-level tracing—when a part of a program is traced, useful
information will be displayed whenever that part is executed. If you trace
a function, the name of the calling function, the value of the arguments
passed, and the return value will be displayed each time the traced function
is called. You can also trace specific lines of code and even individual
variables. In the latter case, you’ll be notified every time the variable
value changes. ‘
2. Placing source-level breakpoints—a breakpoint in a program causes
execution to suspend when that point is reached. At the breakpoint you
can interact with gbx and use its full set of commands to investigate the
situation before resuming execution.
3. Single source line stepping—when you are examining a section of code
closely, you can have execution proceed one source line at a time. (Note
that one line may consist of several machine instructions.)
 4. Displaying source code—you can ask gbx to display any part of the
program source from any file.
5. Examining values—Values, declarations, and other attributes of
identifiers can also be displayed.

199

PROGRAMMING
IN LINUX

NOTES

6. Object-level debugging—Machine instruction-level execution control
and displaying of memory contents or register values are also provided.
To debug a C program using gdb, make sure each object file has been
compiled and the final executable has been produced with gcc -ggdb. One
simple way to achieve this is to compile all source code (.c) files at once
using the gcc -ggdb source files command. This results in an executable
a.out file suitable to run under the control of gdb. Thus, to use gdb on
lowercase.c, you must first prepare it by gcc -g lowercase.c -o lowercase
Then, to invoke gdb, you simply type gdb lowercase to debug the named
executable file. If no file is given, a.out is assumed. When you see the
prompt (gdb)the debugger is ready for an interactive session. When you
are finished simply type the gdb command quit to exit from gdb.
A typical debugging session should follow these steps:
 1. Invoke gdb on an executable file compiled with the -ggdb option.
 2. Put in breakpoints.
 3. Run the program under gdb.
 4. Examine debugging output, and display program values at breakpoints.
 5. Install new breakpoints to zero in on a bug, deleting old breakpoints as
appropriate.
 6. Resume or restart execution.
7. Repeat steps 4-7 until satisfied.
Having an idea of what gdb can do, we are now ready to look at the actual
commands provided by gdb.
Basic gdb Commands
As a debugging tool, gdb provides a rich set of commands. The most
commonly used commands are presented in this section. These should be
sufficient for all but the most obscure bugs. The complete set of commands
are listed in the gdb manual page.]
 To begin execution of the target program within gdb, use

(gdb) run [args] [< file1] [> file2] (start execution in
gdb)

where args are any command-line arguments needed by the binary file. It is
also permitted to use > and < for I/O redirection. If lowercase is being
debugged, then (gdb) run < input file > output file makes sense.
However, before running the program, you may wish to put in breakpoints
first.

200

LINUX OPERATING SYSTEM

NOTES

The break command can be abbreviated to br. Lines are specified by line
numbers which can be displayed by these commands.

list displays the next 10 lines.
list line1,line2 displays the range of lines.
list function displays a few lines before and after
function

When program execution under gdb reaches a breakpoint, the execution is
stopped, and you get a (gdb) prompt so you can decide what to do and
what values to examine. Commands useful at a breakpoint are in next
table, where the command bt is short for backtrace which is the same as
the command where. After reaching a breakpoint you may also single
step source lines with step (execute the next source line) and next
(execute up to the next source line). The difference between step and next
is that if the line contains a call to a function, step will stop at the
beginning of that function block but next will not.
As debugging progresses, breakpoints are put in and taken out in an
attempt to localize the bug. Commands to put in breakpoints have been
given. To disable or remove breakpoints, use

disable number ... (disables the given breakpoints)
enable number ... (enables disabled breakpoints)
delete number ... (removes the given breakpoints)

Each breakpoint is identified by a sequence number.A sequence number is
displayed by gdb after each break command. If you do not remember the
numbers, enter info breakpoints to display all currently existing
breakpoints.
If you use a set of gdb commands repeatedly, consider putting them in a
file, say, mycmds, and run gdb this way

gdb -x mycmds a.out
A Sample Debugging Session with gdb
Let’s show a complete debugging session using the source code low.c
which is a version of lowercase.c that uses the Linux I/O system calls
read and write to perform I/O.

 #include <unistd.h> ‘
 #include <stdlib.h>

201

PROGRAMMING
IN LINUX

NOTES

 #include <stdio.h>
 #include <ctype.h>
 #define MYBUFSIZ 1024
int main(int argc, char* argv[])
{ char buffer[MYBUFSIZ];
void lower(char*, int);
int nc; /* number of characters */
while ((nc = read(STDIN_FILENO, buffer, MYBUFSIZ)) >
0)
{ lower(buffer,nc);
nc = write(STDOUT_FILENO, buffer, nc);
if (nc == -1) break;
}
if (nc == -1) /* read or write failed */
{ perror(argv[0]);
 exit(EXIT_FAILURE);
 }
 return EXIT_SUCCESS; /* normal termination */
}
 void lower(char *buf, int length)
 { while (length-- > 0)
{ if (isupper(*buf)) *buf = tolower(*buf);
buf++;
 }
 }

We now show how gdb is used to control the execution of this program.
User input is shown after the prompt (gdb). Output from gdb is indented.
 We first compile lowercase.c for debugging and invoke gdb.

gcc -ggdb low.c -o low
gdb low

Now we can interact with gdb.
(gdb) list 10
int main(int argc, char* argv[])
{ char buffer[MYBUFSIZ];
void lower(char*, int);
int nc; /* number of characters */
while ((nc = read(0, buffer, MYBUFSIZ)) > 0)
{ lower(buffer,nc);
 nc = write(1, buffer, nc);
 if (nc == -1) break;

202

LINUX OPERATING SYSTEM

NOTES

 }
(gdb) br 10 (line containing system call read)
Breakpoint 1 at 0x400660: file low.c, line 10.
(gdb) br 12 (line containing system call write)
Breakpoint 2 at 0x400671: file low.c, line 12.
(gdb> br lower (function lower)
Breakpoint 3 at 0x4006ec: file low.c, line 23.
(gdb) run < file1 > file2 (run program)
Starting program: /home/pwang/ex/bug < file1 > file2
Breakpoint 1, main (argc=1, argv=0x7fff0f4ecfa8) at low.c:10

10 while ((nc = read(0, buffer, MYBUFSIZ)) > 0)
(gdb) whatis nc
type = int
(gdb) cont
Continuing.

Breakpoint 3, lower (buf=0x7fff0f4ecab0 "It Is Time for All Good
Men\n7", length=28) at low.c:23

23 { while (length-- > 0)
 (gdb) bt
#0 lower (buf=0x7fff0f4ecab0 "It Is Time for All
Good Men\n7", length=28) at low.c:23
 #1 0x0000000000400671 in main (argc=1,
argv=0x7fff0f4ecfa8)
 at low.c:11
 (gdb) whatis length
 type = int
(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0x7fff0f4ecfa8) at low.c:12
12 nc = write(1, buffer, nc); \
 (gdb) bt
#0 main (argc=1, argv=0x7fff0f4ecfa8) at low.c:12 \
 (gdb) cont
Continuing.
 Program exited normally.
 (gdb) quit

GDB offers many commands and ways to debug.When in gdb, you can use
the help command to obtain brief descriptions on commands. You can
also look for gdb commands matching a regular expression with apropos
command inside gdb. For example, you can type

203

PROGRAMMING
IN LINUX

NOTES

 (gdb) help break (displays info on break command)
 (gdb) help (explains how to use help)

The GUI provided by insight can improve the debugging experience. For
one thing, you don’t need to memorize the commands because all the
available controls at any given time are clearly displayed by the insight
window.
Examining Core Dumps
In our preceding example (low.c), there were no errors. When your
executable program encounters an error, a core dump file is usually
produced. This file, named core.pid, is a copy of the memory image of
your running program, with the process id pid, taken right after the error.
Examining the core dump is like investigating the scene of a crime; the
clues are all there if you can figure out what they mean. A core dump is
also produced if a process receives certain signals. For example, you can
cause a core dump by hitting the quit character (ctrl+\) on the keyboard.
The creation of a core file may also be controlled by limitations set in
your Shell. Typing the Bash command
ulimit -c
 will display any limits set for core dumps. A core dump bigger than the
limit set will not be produced. In particular,
ulimit -c 0
prevents core dumps all together. To remove any limitation on core dumps
use ulimit -c unlimited
You can use gdb to debug an executable with the aid of a core dump by
simply giving the core file as an argument.

 gdb executable corefile
Information provided by the given corefile is read in for you to examine.
The executable that produced the corefile need not have been compiled
with the -ggdb flag as long as the executable file passed to gdb was
compiled with the flag.
Among other things, two pieces of important information are preserved in
a core dump: the last line executed and the function call stack at the time of
core dump. As it starts, gdb displays the call stack at the point of the core
dump.
Summary
The C language is native to Linux and is used to write both application
and system programs. Most Linux systems support C with the GCC
compiler and the POSIX run-time libraries glibc from GNU.
The gcc compiler goes through five distinct phases to compile a program:
preprocessing, compiling, optimizing (optional), assembly, and linking/

204

LINUX OPERATING SYSTEM

NOTES

loading. GCC calls the preprocessor (cpp), the assembler (as), and the
linker/loader (collect2/ld) at different phases and generates the final
executable.
The Standard C Library is an ISO C99 API for headers and library
routines.The GNU glibc contains Standard C Library implementations and
other POSIX-compliant libraries. In addition, Linux provides many other
useful libraries relating to networking, X Windows, etc.
A library is a type of archive file created and maintained using the ar
command. You can create and maintain your own libraries with ar.
Standard header files provide access to system and library calls. Including
the correct header files is important for C programs. Library functions,
documented in section 3 of the Linux man pages, make application C
programs easier to port to different platforms, whereas system calls,
documented in section 2 of the man pages, access the Linux kernel
directly.
Linux has well-established conventions for command-line arguments and
for the reporting and handling of errors from system and library calls.The
gdb debugger is a powerful tool for interactive run-time, source-level
debugging and for analysis of a core dump. The insight tool provides a
nice GUI for using gdb.
Review & Self Assessment Question:

Q1-What is Command Line Argument?
Q2-What is GCC Compiler?
Q3- Describe the term “The C Preprocessor”?
Q4-Explain Linking / Loading ?
Q5-Write the steps for Error Recovery ?

Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

205

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

UNIT: 9- I/O AND PROCESS
CONTROL SYSTEM CALLS

Contents
 Introduction
 System Level I/O
 I/O descriptor
 Determining allowable file access
 Process Control
 Virtual Address Space
 Process Life Cycle
 The Process Table
 The PS Command
 Review & Self Assessment Question
 Further Readings

Introduction
 An operating system (OS) provides many tools and facilities to make a
computer usable. However, the most basic and fundamental set of services
is the system calls, specific routines in the operating system kernel that are
directly accessible to application programs. There are over 300 system
calls in Linux with a kernel-defined number starting from 1. Each system
call also has a meaningful name and a symbolic constant in the form
SYS_name for its number. With a few exceptions, a system call name
corresponds to the routine sys_name in the Linux kernel source code.
A program under execution is called a process. When a process makes a
system call at run time, a software-generated interrupt, often known as an
operating system trap, triggers the process to switch from user mode to
kernel mode and to transfer control to the entry point of the target kernel
routine corresponding to the particular system call. A process running in
kernel mode can execute instructions that are not available in user mode.
Upon system call completion, the process switches back to user mode.
Higher level system facilities are built by writing library programs that
use the system calls. Because Linux is implemented in C, its system calls
are specified in C syntax and directly called from C programs.
 Important Linux system calls are described here. These allow you to
perform low-level input/output (I/O), manipulate files and directories,
create and control multiple concurrent processes, and manage interrupts.

206

LINUX OPERATING SYSTEM

NOTES

Examples show how system calls are used and how to combine different
system calls to achieve specific goals.
Just like library functions, a system call may need one or more associated
header files. These header files are clearly indicated with each call
described.
The set of system calls and their organization form the C-language
interface to the Linux kernel, and this interface is nearly uniform across
all major Linux distributions. The reason is because Linux systems
closely follow POSIX (Portable Operating System Interface), an open
operating system interface standard accepted worldwide. POSIX is
produced by IEEE (Institute of Electrical and Electronics Engineers) and
recognized by ISO (International Organization for Standardization) and
ANSI (American National Standards Intitute). By following POSIX,
software becomes easily portable to any POSIX-compliant OS.
Documentation for any system call name can be found with man 2 name
in section 2 of the man pages.
System-Level I/O
High-level I/O routines such as putc and fopen, which are provided in the
Standard C Library (Chapter 9), are adequate for most I/O needs in C
programs. These library functions are built on top of low-level calls
provided by the operating system. In Linux, the I/O stream of C is built
on top of the I/O descriptor mechanism supported by system calls.

Getting to know the low-level I/O facilities will not only provide insight
on how the library functions work, but will also allow you to use I/O in
ways not supported by the Standard C Library.
 Linux features a uniform interface for I/O to files and devices, such as a
terminal window or an optical drive, by representing I/O hardware as
special files. We shall discuss I/O to files, understanding they apply also
to devices, which are nothing but special files. In addition to files, Linux
supports I/O between processes (concurrently running programs) through
abstract structures known as pipes and sockets. Although files, pipes, and
sockets are different I/O objects, they are supported by many of the same
low-level I/O calls explained here.

207

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

I/O Descriptors
Before file I/O can take place, a program must first indicate its intention to
Linux. This is done by the open system call declared as follows:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *filename, int access [, mode_t mode])

Arguments to open are
filename character string for the pathname to the file
access an integer code for the intended access
mode the protection mode for creating a new file

The call opens filename, for reading and/or writing, as specified by access
and returns an integer descriptor for that file. The filename can be given in
any of the three valid forms: full pathname, relative pathname, or simple
filename.The open command is also used to create a new file with the
given name.Subsequent I/O operations will refer to this descriptor rather
than to the filename.Other system calls return descriptors to I/O objects
such as pipes and sockets.A descriptor is actually an index to a per-process
open file table which contains necessary information for all open files and
I/O objects of the process. The open call returns the lowest index to a
currently unused table entry. Each table entry leads, in turn, to a kernel
open file table entry. All processes share the same kernel open file table
and it is possible for file descriptors from different processes to refer to
the same kernel table entry.

For each process, three file descriptors, STDIN_FILENO(0),
STDOUT_FILENO (1), and STDERR_FILENO (2), are automatically
opened initially, allowing ready access to standard I/O. The access code is
formed by the logical or (|) of header-supplied single-bit values including

O_RDONLY to open file for reading only
O_WRONLY to open file for writing only
O_RDWR to open file for reading and writing
O_NDELAY to prevent possible blocking
O_APPEND to open file for appending
O_CREAT to create file if it does not exist

208

LINUX OPERATING SYSTEM

NOTES

O_TRUNC to truncate size to 0
O_EXCL to produce an error if the
O_CREAT bit is on and file exists

Opening a file with O_APPEND instructs each write on the file to be
appended to the end. If O_TRUNC is specified and the file exists, the file
is truncated to length zero. If access is

(O_EXCL | O_CREAT)
 and if the file already exists, open returns an error. The purpose is to avoid
destroying an existing file.
The third and optional argument to open is a file creation mode in case
the O_CREAT bit is on. The mode is a bit pattern (of type mode_t from
<sys/types.h> with symbolic values from <sys/stat.h>) explained in detail
in next Section , where the creat system call is described.
 If the open call fails, a -1 is returned; otherwise, a descriptor is returned.
A process may have no more than a maximum number of descriptors open
simultaneously. This limit is large enough in Linux to be of no practical
concern.
The following example (Ex: ex10/open.c) shows a typical usage of the
open system call. The third argument to open is unused because it is not
needed for the read-only (O_RDONLY) operation. In this case, any integer
can be used as the third argument.

 /******* open.c *******/
 #include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
 int main(int argc, char *argv[])
{ int fd; /* file descriptor */
 /* open argv[1] for reading */
if ((fd = open(argv[1], O_RDONLY, 0)) == -1)
{ fprintf(stderr,"%s: cannot open %s\n", argv[0], argv[1]);
 perror("open system call"); exit(EXIT_FAILURE); }
 /* other code */
}

 When a system or library call fails, you can use the code
 perror (const char* msg) (displays system error)

to display the given message msg followed by a standard error message
associated with the error.
When a descriptor fd is no longer needed in a program, it can be deleted
from the per-process open file table using the call int close(int fd) (closes

209

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

descriptor) Otherwise, all open file descriptors will be closed when the
program terminates.
Reading and Writing I/O Descriptors
Reading and writing are normally sequential. For each open descriptor,
there is a current position which points to the next byte to be read or
written. After k bytes are read or written, the current position, if movable,
is advanced by k bytes. Whether the current position is movable depends
on the I/O object. For example, it is movable for an actual file but not for
stdin when connected to the keyboard.
The system calls read and write are declared as

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
ssize t read(int fd, void *buffer, size t k) (reads input from

fd)
ssize t write(int fd, void *buffer, size t k) (writes output to

fd)
 where fd is a descriptor to read from or write to, buffer points to an array
to receive or supply the bytes, and k is the number of bytes to be read in or
written out. Obviously, k must not exceed the length of buffer. Read will
attempt to read k bytes from the I/O object represented by fd. It returns the
number of bytes actually read and deposited in the buffer. The type size_t
is usually unsigned int (non-negative) and ssize_t is usually int (can be
negative). If read returns less than k bytes, it does not necessarily mean
that end-of-file has been reached, but if zero is returned, then the end of
the file has been reached.
 The write call outputs k bytes from the buffer to fd and returns the actual
number of bytes written out. Both read and write return a -1 if they fail.
As an example, we can write a readline function with low-level read (Ex:
ex10/readline.c).

 int readline(char s[], int size)
 { char *tmp = s;
 /* read one character at a time */
 while (0 < --size && read(0, tmp, 1) != 0
 && *tmp++ != ’\n’); /* empty loop body */
 tmp = ’\0’; / string terminator */
 return tmp-s; /* number of characters before terminator */
}

The while loop control is intricate and warrants careful study. The size
argument is the capacity of the array s. The function returns the number of
characters read, not counting the string terminator.

210

LINUX OPERATING SYSTEM

NOTES

Moving the Current Position
When reading or writing an I/O object that is an actual file, the object can
be viewed as a sequence of bytes. The current position is moved by the
read and write operations in a sequential manner. As an alternative to this,
the system call lseek provides a way to move the current position to any
location and therefore allows random access to bytes of the file. The
standard library function fseek is built on top of lseek. The call

#include <sys/types.h>
 #include <unistd.h>
off t lseek(int fd,

off t offset, int origin) (moves read/write position)
 moves the current position associated with the descriptor fd to a byte
position defined by (origin + offset). Table 10.1 shows the three possible
origins.

The offset can be positive or negative. The call lseek returns the current
position as an integer position measured from the beginning of the file. It
returns -1 upon failure.

It is possible to lseek beyond the end of file and then write. This creates a
hole in the file which does not occupy file space. Reading a byte in such a
hole returns zero.
In some applications, holes are left in the file on purpose to allow easy
insertion of additional data later. It is an error to lseek a non-movable
descriptor such as the STDIN_FILENO. See the example code package
(Ex: ex10/lowerseek.c) for an implementation of the lowercase program
using lseek and O_RDWR.
Operations on Files
 System calls are provided for creating and deleting files, accessing file
status information, obtaining and modifying protection modes, and other
attributes of a file. These will be described in the following subsections.
Creating and Deleting a File
For creating a new file, the open system call explained in the previous
section can be used. Alternatively, the system call

 int creat(char *filename, int mode) (creates a new file)

211

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

can also be used. If the named file already exists, it is truncated to zero
length, and ready to be rewritten. If it does not exist, then a new directory
entry is made for it, and creat returns a file descriptor for writing this new
file. It is equivalent to

open(filename, (O CREAT|O WRONLY|O TRUNC),
mode)

The lower 9 bits of mode (for access protection) are modified by the file
creation mask umask of the process using the formula

 (~umask) & mode
The mode is the logical or of any of the basic modes shown in Table.
The initial umask value of a process is inherited from the parent process
of a running program.We have seen how to set umask using the Bash
umask command.The default umask is usually 0022, which clears the
write permission bits for group and other.

A program can set umask with the system call
#include <sys/types.h>
#include <sys/stat.h>
 mode_t umask(mode_t mask);
 The returned value is the old umask.
For example,
 umask(0077);

 will force file modes for newly created files to allow file access only for
the owner. The value of umask is inherited by child processes. After a file
is created, it can be read/written with the read, write calls.
Linking and Renaming Files
For an existing file, alternative names can also be given. The call link
 #include <unistd.h>
 int link(const char *file, const char *name) (a hard link)
 int symlink(const char *file, const char *name) (a symbolic link)
establishes another name (directory entry) for the existing file.The new
name is a hard link and can be anywhere within the same file system. To
remove a link, the call

 int unlink(const char *name) (deletes file link)
is used. When the link removed is the last directory entry pointing to this
file, then the file is deleted.
Use a symbolic link (the symlink system call) for a directory or a file in a
different filesystem.
 At the Shell level, renaming a file is done with the mv command. At the
system call level, use

#include <stdio.h>

212

LINUX OPERATING SYSTEM

NOTES

 int rename(const char* old name, const char* new name)
Both filenames must be within the same filesystem. When renaming a
directory, the new name must not be under old name.

Accessing File Status

For each file, Linux maintains a set of status information such as file type,
protection modes, time when last modified and so on. The status
information is kept in the i-node of a file. To access file status
information from a C program, the following system calls can be used.

 #include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
 int stat(const char *file, struct stat *buf) (of file)
 int fstat(int fd, struct stat *buf) (of descriptor fd)
 int lstat(const char *link, struct stat *buf) (of the symbolic
link)

Note that fstat is the same as stat, except it takes a file descriptor that has
been opened already. This parallel exists for many other system calls. The
lstat is the same as stat, except the former does not follow symbolic links.
The status information for the given file is retrieved and placed in buf.
Accessing status information does not require read, write, or execute
permission for the file, but all directories listed in the pathname leading to
the file (for stat) must be reachable.
The stat structure has many members. The next Tables list the symbolic
constants for interpreting the value of the stat member st_mode.

 There are three timestamps kept for each file:

213

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

• st atime (last access time)—The time when file was last read or modified.
It is affected by the system calls mknod, utimes, read, and write. For
reasons of efficiency, st_atime is not set when a directory is searched.
 • st mtime (last modify time)—The time when file was last modified. It is
not affected by changes of owner, group, link count, or mode. It is
changed by : mknod, utimes, and write.
 • st ctime (last status change time)—The time when file status was last
changed. It is set both by writing the file and by changing the information
contained in the i-node. It is affected by chmod, chown, link, mknod,
unlink, utimes, and write.
The timestamps are stored as integers, and a larger integer value represents
a more recent time. Usually, Linux uses GMT (Greenwich Mean Time).
The integer timestamps, however, represent the number of seconds since
a fixed point in the past, known as the POSIX epoch which is UTC
00:00:00, January 1, 1970. The library routine ctime converts such an
integer into an ASCII string representing date and time.
 The mask S_IFMT is useful for determining the file type. For example, if
((buf.st_mode & S_IFMT) == S_IFDIR)

determines whether the file is a directory.
Determining Allowable File Access
It is possible to determine whether an intended read, write or execute
access to a file is permissible before initiating such an access. The access
system call is defined as

 #include <unistd.h>
 int access(const char *file, int a mode) (checks access to
file)
 The access call checks the permission bits of file to see if
the intended access given by a mode is allowable. The
intended access mode is a logical or of the bits R_OK,
W_OK, and X_OK defined by

 #define R_OK 4 /* test for read permission */

214

LINUX OPERATING SYSTEM

NOTES

#define W_OK 2 /* test for write permission */
 #define X_OK 1 /* test for execute (search) permission */
 #define F_OK 0 /* test for presence of file */

If the specified access is allowable, the call returns 0; otherwise, it returns -
1. Specifying a mode as F_OK tests whether the directories leading to the
file can be searched and whether the file exists.
Operations on Directories
Creating and Removing a Directory
 In addition to files, it is also possible to establish and remove directories
with Linux system calls. The system call mkdir creates a new directory.

 #include <sys/stat.h>
#include <sys/types.h>
 int mkdir(const char *dir, mode t mode) (makes a new
folder)

 It creates a new directory with the name dir. The mode works the same
way as in the open system call. The new directory’s owner ID is set to the
effective user ID of the process. If the parent directory containing dir has
the set-group-ID bit on, or if the filesystem is mounted with BSD
(Berkeley UNIX) group semantics, the new directory dir will inherit the
group ID from its parent folder. Otherwise, it will get the effective group
ID of the process.

 The system call rmdir
#include <unistd.h>
int rmdir(const char *dir) (removes a folder)

remove the given directory dir. The directory must be empty (having no
entries other than. and ..). For both mkdir and rmdir, a 0 returned value
indicates success, and a -1 indicates an error. The content of a directory
consists mainly of file names (strings) and i-node numbers (i-number). The
length limit of a simple fime name depends on the filesystem. Typically,
simple file names are limited to a length of 255 characters.
The system call getdents can be used to read the contents of a directory
file into a character array in a system-independent format. However, a
more convenient way to access directory information is to use the
directory library functions discussed in the next section.
Directory Access
In the Linux file system, a directory contains the names and i-numbers of
files stored in it. Library functions are available for accessing directories.
To use any of them, be sure to include these header files:

 #include <sys/types.h>
 #include <dirent.h>

215

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

To open a directory, use either
 DIR *opendir(const char *dir) (opens directory stream)
or
DIR *fdopendir(int fd) (opens directory stream)
to obtain a directory stream pointer (DIR *) for use in subsequent
operations.If the named directory cannot be accessed, or if there is not
enough memory to hold the contents of the directory, a NULL (invalid
pointer) is returned.
Once a directory stream is opened, the library function readdir is used to
sequentially access its entries. The function

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dp) (returns next dir entry from dp)
 returns a pointer to the next directory entry. The pointer value becomes
NULL on error or reaching the end of the directory.
The directory entry structure struct dirent records information for any
single file in a directory.

 struct dirent
{ ino_t d_ino; /* i-node number of file */
 off_t d_off; /* offset to the next dirent */
 unsigned short d_reclen; /* length of this record */
 unsigned char d_type; /* file type */
 char d_name[256]; /* filename */
};

Each file in a filesystem also has a unique i-node number . The
NAME_MAX constant, usually 255, gives the maxima length of a
directory entry name. The data structure returned by readdir can be
overwritten by a subsequent call to readdir.

 The function
 closedir(DIR *dp) (closes directory stream)

closes the directory stream dp and frees the structure associated with the
DIR pointer.
To illustrate the use of these library functions, let’s look at a function
searchdir (Figure 10.4) which searches dir for a given file and returns 1 or
0 depending on whether the file is found or not (Ex: ex10/searchdir.c).
Note that the example uses knowledge of the dirent structure. Enumeration
constants FOUND and NOT_FOUND are used. The for loop goes through
each entry in dir to find file. Note the logical not (!) in front of strcmp.
Current Working Directory
The library routine

216

LINUX OPERATING SYSTEM

NOTES

 char *get current dir name(void); (obtains current directory)
 returns the full pathname of the current working directory. The system call

 int chdir(const char *dir) (changes directory)
is used to change the current working directory to the named directory. A
value 0 is returned if chdir is successful; otherwise, a -1 is returned.
Because the current directory is a per-process attribute, you will return to
the original directory after the program exits.
An Example: ccp
It is perhaps appropriate to look at a complete example of a Linux
command written in C. The command we shall discuss is ccp (conditional
copy), which is used to copy files from one directory to another (Ex:
ex10/ccp.c). A particular file is copied or not depending on whether
updating is necessary.
The ccp command copies files from a source folder source to a destination
folder dest. The usage is
 ccp source dest [file . . .]
 The named files or all files (but not directories) are copied from source to
dest subject to the following conditions:
1. If the file is not in dest, copy the file.
2. If the file is already in dest but the file in source is more recent, copy
the file.
3. If the file is already in dest and the file in source is not more recent, do
not copy the file.
To check if a file is a directory, we call the isDir function (line 1). To
compare the recency of two files (line 2), we use the function newer
presented in next section.

/******** ccp : the conditional copy command ********/
 #include <sys/param.h>
 #include <stdio.h>
#include <stdlib.h>
 #include <dirent.h>
 #include <unistd.h>
 #include <string.h>
 #include <sys/stat.h>
 #include "newer.h"
 int isDir(const char *file)
 { struct stat stb;
 if (stat(file, &stb) < 0) /* result returned in stb */
 return -1; /* stat failed */
 return ((stb.st_mode & S_IFMT) == S_IFDIR);

217

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

}
void ccp(const char* name, const char* d1, const char* d2)
 { char f1[MAXPATHLEN+1], f2[MAXPATHLEN+1];
 strcpy(f1,d1); strcpy(f2,d2); strcat(f1,"/");
 strcat(f2,"/"); strcat(f1,name); strcat(f2,name);
 if (isDir(f1)==0) /* (1) */
 if (access(f2,F_OK) == -1 || newer(f1,f2)) /* (2) */
 printf("copy(%s,%s)\n", f1, f2);
else
printf("no need to copy(%s,%s)\n", f1, f2);
}
 int main(int argc,char* argv[])
 { DIR *dirp1;
 struct dirent *dp;
if (argc < 3) /* need at least two args */
 { fprintf(stderr, "%s: wrong number of arguments",
argv[0]);
 exit(EXIT_FAILURE);
 }
 else if (argc > 3) /* files specified */
 { int i;
 for (i = 3; i < argc; i++)
 ccp(argv[i],argv[1],argv[2]) ; /* (3) */
 return EXIT_SUCCESS;
}
 /* now exactly two args */
 if ((dirp1 = opendir(argv[1])) == NULL)
 { fprintf(stderr, "%s: can not open %s", argv[0], argv[1]);
 exit(EXIT_FAILURE); }
for (dp = readdir(dirp1); dp != NULL;
 dp = readdir(dirp1)) /* (4) */
 if (strncmp(dp->d_name,".", 1))
 ccp(dp->d_name,argv[1],argv[2]);
 return EXIT_SUCCESS;
 }

If files are given on the command line, we call the function ccp on those
files (line 3). Otherwise, we go through all files whose names do not
begin with a period (line 4). To compile we use

gcc ccp.c newer.c -o ccp
Shell-Level Commands from C Programs

218

LINUX OPERATING SYSTEM

NOTES

In the ccp.c example, we have not performed any actual file copying. We
simply used printf to indicate the copying actions needed. To carry out the
file copying, it is most convenient to invoke a Shell-level cp command
from within a C program. Allowing execution of Shell-level commands
from within C programs is very useful. With this ability, you can, for
example, simply issue a cp command to copy a file from a C program
rather than writing your own routines. The Linux library call system is
used for this purpose.

#include <stdlib.h>
 int system(const char *cmd str) /* issues Shell command */

 The system call starts a new Sh process to execute the given string
cmd_str. The Shell terminates after executing the given command and
system returns. The returned value represents the exit status of the given
command. Thus, to copy file1 to file2, you can use

 char cmd_string[80];
 sprintf(cmd_string, "cp %s %s\n", file1, file2);
 system(cmd_string);

The string is, of course, interpreted by the Shell before the command is
invoked.Any substitution and filename expansion will be done. Also, the
Shell locates the executable file (for example, /bin/cp) on the command
search path for you. Use the full pathname of the command if you do not
wish to depend on the PATH setting. The system call waits until the
command is finished before returning.
One shortcoming of the system function is that it does not allow you to
receive the results produced by the command or to provide input to it. This
is remedied by the library function popen.
Process Control
A key operating system kernel service is process control. A process is a
program under execution, and in a multiprogramming system like Linux,
there will be multiple processes running concurrently at any given time.
We will look at process address space, states, control structures, creation
and termination, executable loading, and inter-process communication here
and in later sections.
Virtual Address Space
 When created, each individual process has, among other resources,
memory space allocated for its exclusive use. This memory space is often
referred to as the virtual address space (or simply address space) of a
process. The address space consists of a kernel space which is the Linux
kernel shared by all processes and a user space which is off limits to other
processes.A process executing in user mode has no access to the kernel

219

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

space except through system calls provided by the kernel. Upon a system
call, control is transferred to a kernel address through a special signal
(Chapter 10, Section 10.16) and the process switches to kernel mode.
While in kernel mode, the process has access to both user space and
kernel space. The process switches back to user mode upon return of the
system call.
The process user space is organized into shared, text, data, and stack
regions.

• Stack—A last-in-first-out data structure used to manage function calls,
returns, parameter passing, and returned values. The memory used for the
stack will grow and shrink with the depth of nesting of function calls.
 • Data—The values of variables, arrays, and structures. Objects allocated
at compile time will occupy fixed memory locations in the data area.
Room for dynamically allocated space (through malloc) is also included
in the data area.
• Text—The machine instructions that represent the procedures or
functions in the program. This part of a process will generally stay
unchanged over the lifetime of the process.
 • Shared—Code from libraries that is not duplicated when shared with
other processes.
In addition to the address space, each process is also assigned system
resources necessary for the kernel to manage the process.
Process Life Cycle
Each process is represented by an entry in the process table which is
manipulated by the kernel to manage all processes. The kernel schedules
the CPU (Central Processing Unit) and switches it from running one
process to the next in rapid succession. Thus, the processes appear to
make progress concurrently. On a computer with multiple CPUs, a
number of processes can actually run simultaneously or in parallel. A
process usually goes through a number of states before running to
completion.

220

LINUX OPERATING SYSTEM

NOTES

 The process states are
• Running—The process is executing.
• Waiting/Blocked—A process in this state is waiting for an event to occur.
Such an event could be an I/O completion by a peripheral device, the
termination of another process, the availability of data or space in a
buffer, the freeing of a system resource, and so on. When a running
process has to wait for such an event, it is blocked and waiting to be
unblocked so it can continue to execute. A process blocking creates an
opportunity for a context switch, shifting the CPU to another process.
Later, when the event a blocked process is waiting for occurs, it awakens
and becomes ready to run.
• Ready—A process in this state is then scheduled for CPU service
• Zombie—After termination of execution, a process goes into the zombie
state. The process no longer exists. The data structure left behind contains
its exit status and any timing statistics collected. This is always the last
state of a process.
A process may go through the intermediate states many times before it is
finished.
From a programming point of view, a Linux process is the entity created
by the fork system call. In the beginning, when Linux is booted there is
only one process (process 0) which uses the fork system call to create
process 1, known as the init process. The init process is the ancestor of all
other processes, including your login Shell. Process 0 then becomes the
virtual memory swapper.
The Process Table
A system-wide process table is maintained in the Linux kernel to control
all processes. There is one table entry for each existing process. Each
process entry contains all key information needed to manage the process,
such as PID (a unique integer process ID), UID (real and effective owner
and group ID’s of user executing this process), process status, and
generally information displayed by the ps command. Linux provides a
directory under /proc/ for each existing process, making it easy to access
information on individual processes from the Shell level.

221

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

The ps Command
 You can also obtain various kinds of information on processes with the
command ps (displays process status)
 Because Linux is a multi-user system and because there are many system
processes that perform various chores to keep Linux functioning, there are
always multiple processes running at any given time. The ps command
attempts to display a reasonable set of processes that are likely to be of
interest to you, and you can give options to control what subset of
processes are displayed.
The ps command displays information only for your processes. Give the
option -a display all interesting processes. Also, ps displays in short form
unless given the option -f to see a full-format listing. For example,

ps -af
displays, in full format, all interesting processes. Use the option -e (or -A)
to display all current processes, including daemon processes (those without
a control terminal such as the cron process). See the ps man page for quite
a few other options.
Information provided for each process includes

 PID—The process ID in integer form
 PPID—The parent process ID in integer form
 S—The single-letter state code from the ps man page
 STIME or START—The process start time
TIME—CPU time (in seconds) used by the process
TT—Control terminal of the process
COMMAND—The user command which started this
process

When you are looking for a particular process, the pipe
 ps -e | grep string
 can be handy.

Process Creation: fork
 The fork system call is used inside a C program to create another process.

#include <sys/types.h>
 #include <unistd.h>
pid t fork();

222

LINUX OPERATING SYSTEM

NOTES

The process which calls fork is referred to as the parent process, and the
newly created process is known as the child process. After the fork call, the
child and the parent run concurrently.
The child process created is a copy of the parent process except for the
following:
 • The child process has a unique PID.
• The child process has a different PPID (PID of its parent).
The fork is called by the parent, but returns in both the parent and the
child. In the parent, it returns the PID of the child process, whereas in the
child, it returns 0. If fork fails, no child process is created, and it returns -
1. Here is a template for using fork.

 pit_t pid;
 if ((pid = fork()) == 0)
 {
/* put code for child here */
 }
 if (pid < 0)
 {
 /* fork failed, put error handling here */
 }
/* fork successful, put remaining code for parent

here */
The following simple program (Ex: ex10/simplefork.c) serves to illustrate
process creation, concurrent execution, and the relationships between the
child and the parent across the fork call.

 /******** simplefork.c ********/
 #include <sys/types.h>
 #include <unistd.h>
#include <stdlib.h>
 #include <stdio.h>
 int main()
 { pid_t child_id;
 child_id = fork(); /* process creation (1) */
 if (child_id == 0) /* child code begin (2) */

{ printf("Child: My pid = %d and my parent pid = %d\n",
getpid(), getppid());
_exit(EXIT_SUCCESS); /* child terminates (3) */

 }
/* child code end */

 if (child_id < 0) /* remaining parent code */

223

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

 {
 fprintf(stderr, "fork failed\n");
 exit(EXIT_FAILURE);
}
 printf("Parent: My pid = %d, spawned child pid = %d\n",
 getpid(), child_id);
 return EXIT_SUCCESS;
 }

After calling fork (line 1), you suddenly have two processes, the parent and
the child, executing the same program starting at the point where fork
returns.
The child and parent execute different code sections in our example
because of the way the program is written. The child only executes the
part under if (child_id==0) (line 2). At the end of the child code (line 3),
it must terminate execution. Otherwise, the child would continue into the
code meant only for the parent. The exit system call is slightly different
from library function exit and is explained in Section 10.14. Note also
that a process can use the system calls getpid() and getppid() to obtain the
process ID of itself and its parent, respectively.
Program Execution: exec Routines
 A process can load and execute another program by overlaying itself with
an executable file. The target executable file is read in on top of the
address space of the very process that is executing, overwriting it in
memory, and execution continues at the entry point defined in the file.
The result is that the process begins to execute a new program under the
same execution environment as the old program, which is now replaced.
This program overlay can be initiated by any one of the exec library
functions, including execl, execv, execve, and several others, each a
variation of the basic execv library function.

#include <unistd.h>
extern char **environ;
int execv(const char *filename, char *const argv[]);

where filename is the full pathname of an executable file, and argv is the
command-line arguments, with argv[0] being command name.
This execv call overlays the calling process with a new executable
program. If execv returns, an error has occurred. In this case the value
returned is -1. The argument argv is an array of character pointers to null-
terminated character strings. These strings constitute the argument list to
be made available to the new process. By convention, at least one
argument must be present in this array, and the first element of this array

224

LINUX OPERATING SYSTEM

NOTES

should be the name of the executed program (i.e., the last component of
filename). To the calling program, a successful execv never returns.
Other exec functions may take different arguments but will work the same
way as execv. To avoid confusion, we will refer to all of them as an exec
call.
 An exec call is often combined with fork to produce a new process which
runs another program.
1. Process A (the parent process) calls fork to produce a child process B.
2. Process B immediately makes an exec call to run a new program.
An exec call transforms the calling process to run a new program. The new
program is loaded from the given filename which must be an executable
file. An executable file is either a binary a.out. or an executable text file
containing commands for an interpreter. An executable text file begins
with a line of the form

 #! interpreter
 When the named file is an executable text file, the system runs the
specified interpreter, giving it the named file as the first argument
followed by the rest of the original arguments. For example, a Bash script
may begin with the line #!/bin/bash

 and an Sh script with
 #!/bin/sh

 As for an executable binary, Linux has adopted the standard ELF
(Executable and Linking Format) which basically provides better support
for the linking and dynamical loading of shared libraries as compared to
the old UNIX a.out format. The command

 readelf -h a.out
 displays the header section of the executable a.out. Do a

 man 5 elf
to read more about the ELF file format.
• Process ID, parent process ID, and process group ID
• Process owner ID, unless for a set-userid program
• Access groups, unless for a set-groupid program
• Working directory and root directory
• Session ID and control terminal
• Resource usages
• Interval timers
• Resource limits
• File mode mask (umask)
• Signal mask
• Environment variable values

225

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

Furthermore, descriptors which are open in the calling process usually
remain open in the new process. Ignored signals remain ignored across an
exec, but signals that are caught are reset to their default values.
 Synchronization of Parent and Child Processes
After creating a child process by fork, the parent process may run
independently or elect to wait for the child process to terminate before
proceeding further. The system call

 #include <sys/types.h>
 #include <sys/wait.h>
 pid t wait(int *t status);

searches for a terminated child (in zombie state) of the calling process. It
performs the following steps:
 1. If there are no child processes, wait returns right away with the value -
1 (an error).
2. If one or more child processes are in the zombie state (terminated)
already, wait selects an arbitrary zombie child, frees its process table slot
for reuse, stores its termination status in *t_status if t_status is not NULL,
and returns its process ID.
3. Otherwise, wait sleeps until one of the child processes terminates and
then goes to step 2.
When wait returns after the termination of a child, the variable (*t status)
is set, and it contains information about how the process terminated
(normal, error, signal, etc.) You can examine the value of *t_status with
predefined macros such as

WIFEXITED(*t_status) (returns true if child exited
normally) WEXITSTATUS(*t_status) (returns the exit
status of child)

 See man 2 wait for other macros and for additional forms of wait.
 A parent process can control the execution of a child process much more
closely by using the ptrace (process trace) system call.This system call is
primarily used for interactive breakpoint debugging such as that supported
by the gdb command.When the child process is traced by its parent, the
waitpid system call is used, which returns when the specific child is
stopped (suspended temporarily).
Process Termination
Every running program eventually comes to an end. A process may
terminate execution in three different ways:
 1. The program runs to completion and the function main returns.
 2. The program calls the library routine exit or the system call exit.

226

LINUX OPERATING SYSTEM

NOTES

 3. The program encounters an execution error or receives an interrupt
signal, causing its premature termination.
The argument to exit/exit is the process exit status and is part of the
termination status of the process. Conventionally, a zero exit status
indicates normal termination and non-zero indicates abnormal
termination. The system call

 void exit(int status)
 terminates the calling process with the following consequences:
 1. All of the open I/O descriptors in the process are now closed.
 2. If the parent process of the terminating process is executing a wait, then
it is notified of the termination and provided with the child termination
status.
3. If the terminating process has child processes yet unfinished, the PPIDs
of all existing children are set to 1 (the init process). Thus, the new
orphan processes are adopted by the init process.
Most C programs call the library routine exit which performs clean-up
actions on I/O buffers before calling exit. The exit system call is used by a
child process to avoid possible interference with I/O buffers shared by
parent and child processes.
The User Environment of a Process
The parameters argc and argv of a C program reference the explicit
arguments given on the command line. Every time a process begins,
another array of strings, representing the user environment, called the
environment list, is also passed to the process. This provides another way
through which to control the behavior of a process. If the function main is
declared as

 int main(int argc, char* argv[], char* arge[])
 then arge receives additional values for the environment list which is
always available for a process in the global array environ:

extern char **environ
 Each environment string is in the form
name=value

Although direct access to environ is possible in a C program, it is simpler
to access environment values in a C program with the library routine
getenv:

 #include <stdlib.h>
 char* getenv(const char* name)

 This routine searches the environment list for a string, of the form
name=value, that matches the given name and returns a pointer to value
or NULL if no match for name is found.

227

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

 With getenv we can write a simple test program (Ex: ex10/envtest.c).
 /******** envtest.c ********/
 #include <stdlib.h>
#include <stdio.h>
 int main(int argc, char* argv[], char* arge[])
 { char *s;
 s = getenv("PATH");
 printf("PATH=%s\n", s);
 return EXIT_SUCCESS;
 }

You can set environment values at the Shell level.Environment variables
and their values are contained in the environment list. Frequently used
environment variables include PATH, HOME, TERM, USER, SHELL,
DISPLAY, and so on .
 In Bash, we can also pass additional environmental values to any single
command by simply listing them before the command. For example,

gcc envtest.c -o envtest
foo=bar/envtest

 At the C level, the execl and execv library calls pass to the invoked
program their current environment. The system call

 #include <unistd.h>
 int execve(const char *file, char *const argv[], char *const
envp[]);

can be used to pass an environment array envp containing additional
environmental values to the new program (Ex: ex10/execve.c).

 /* passing environment with execve */
 #include <unistd.h>
#include <stdlib.h>
 char* envp[3];
 int main(int argc, char* argv[])
{ envp[0]="first=foo";
 envp[1]="second=bar";
envp[2]=NULL;
execve("target-program", argv, envp);
exit(EXIT_FAILURE); /* execve failed */
 }

Interrupts and Signals
 Basic Concepts
 We already know that a program executes as an independent process. Yet,
events outside a process can affect its execution. The moment when such

228

LINUX OPERATING SYSTEM

NOTES

an event would occur is not predictable. Thus, they are called
asynchronous events. Examples of such events include I/O blocking, I/O
ready, keyboard and mouse events, expiration of a time slice, as well as
interrupts issued interactively by the user. Asynchronous events are treated
in Linux using the signal mechanism. Linux sends a certain signal to a
process to signify the occurrence of a particular event. After receiving a
signal, a process will react to it in a well-defined manner. This action is
referred to as the signal disposition. For example, the process may be
terminated or suspended for later resumption.There is a system-defined
default disposition associated with each signal.A process normally reacts
to a signal by following the default action. However, a program also has
the ability to redefine its disposition to any signal by specifying its own
handling routine for the signal.

There are many different signals. For instance, typing ctrl+\ on the
keyboard usually generates a signal known as quit. Sending the quit signal
to a process makes it terminate and produces a core image file for
debugging.Each kind of signal has a unique integer number, a symbolic
name, and a default action defined by Linux.A complete list of all signals
can be found with man 7 signal.
Sending Signals
You may send signals to processes connected to your terminal window by
typing certain control characters such as ctrl+\, ctrl+c, and ctrl+z typed at
the Shell level. These signals and their effects are summarized below.
 ctrl+c SIGINT terminates execution of foreground process
 ctrl+\ SIGQUIT terminates foreground process and dumps core
 ctrl+z SIGTSTP suspends foreground process for later resumption
In addition to these special characters, you can use the Shell-level
command kill to send a specific signal to a given process. The general
form of the kill command is

229

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

 kill [−sig no] process
where process is a process number (or Shell jobid). The optional argument
specifies a signal number sig no.If no signal is specified, SIGTERM is
assumed which causes the target process to terminate.
 In a C program, the standard library function

 int raise(int sig_no) (sends sig_no to the process itself)
is used by a process to send the signal sig_no to itself, and the system call

 int kill(pid_t pid, int sig_no) (sends sig_no to process pid)
 is used to send a specified signal to a process identified by the given
numerical pid.
Signal Delivery and Processing
 When a signal is sent to a process, the signal is added to a set of signals
pending delivery to that process. Signals are delivered to a process in a
manner similar to hardware interrupts. If the signal is not currently blocked
(temporarily ignored) by the process, it is delivered to the process by the
following steps:
1. Block further occurrences of the same signal during the delivery and
handling of this occurrence.
2. Temporarily suspend the execution of the process and call the handler
function associated with this signal.
3. If the handler function returns, then unblock the signal and resume
normal execution of the process from the point of interrupt.
There is a default handler function for each signal. The default action is
usually exiting or core dump. A process can replace a signal handler with
a handler function of its own. This allows the process to trap a signal and
deal with it in its own way. The SIGKILL and SIGSTOP signals,
however, cannot be trapped.
Signal Trapping
After receiving a signal, a process normally (by the default signal handling
function) either exits (terminated) or stops (suspended). In some situations,
it is desirable to react to specific signals differently. For instance, a process
may ignore the signal, delete temporary files before terminating, or handle
the situation with a longjmp.
The system call sigaction is used to trap or catch signals

 #include <signal.h>
 int sigaction(int signum,
 const struct sigaction *new,
 struct sigaction *old);

where signum is the number or name of a signal to trap. The new (old)
structure contains the new (old) handler function and other settings. The

230

LINUX OPERATING SYSTEM

NOTES

handling action for signum is now specified by new, and the old action is
placed in old, if it is not NULL, for possible later reinstatment.
The struct sigaction can be found with man 2 sigaction, but you basically
can use it in the following way:

struct sigaction new;
 new.sa handler=handler function;
 new.sa_flags=0;

The handler function can be a routine you write or one that is defined by
the system. If handler function is SIG_IGN, the signal is subsequently
ignored. If it is SIG_DFL, then the default action is restored. The new
handler normally remains until changed by another call to sigaction.The
sa_flags control the behavior of the signal handling. For example,
sa_flags=SA_RESETHAND automatically resets to the default handler
after the new signal handler is called once.
We now give a simple example that uses the sigaction system call to trap
the SIGINT (interrupt from terminal) signal and adds one to a counter for
each such signal received (Ex: ex10/sigcountaction.c). To terminate the
program type ctrl+\ or use kill -9.

 #include <signal.h>
 #include <stdio.h> ‘
 void cnt(int sig)
{
static int count=0;
printf("Interrupt=%d, count=%d\n", sig, ++count);
}
 int main()
{
struct sigaction new;
struct sigaction old;
new.sa_handler=cnt;
new.sa_flags=0;
sigaction(SIGINT, &new, &old);
printf("Begin counting INTERRUPTs\n");
 for(;;); /* infinite loop */
}

If the signal handler function, such as cnt here, is defined to take an int
argument (for example, sig), then it will automatically be called with the
signal number that caused a trap to this function. Of course, counting the
number of signals received is of limited application.A more practical

231

I/O AND PROCESS
CONTROL SYSTEM

CALLS

NOTES

example, cleanup.c, has to do with closing and deleting a temporary file
used by a process before terminating due to a user interrupt.
Review & Self Assessment Question:

Q1- What do you mean by system Level I/O?
Q2- What are the operations on files?
Q3- What do you mean by Directory Access?
Q4- What is Virtual Address Space?
Q5- Explain process life cycle?
Q6- What do you mean by Process Termination?
Q7- What is Signal Trapping?

Further Readings
Linux Operating System Richard Petersen
Linux Operating System Paul S. Wang
Linux Operating System by David Maxwell and Andrew Bedford
Linux Operating System by Richard Blum and Christine Bresnahan
Linux Operating System by Bhatt P.C.P

BIBLIOGRAPHY
Linux Operating System by Richard Petersen
Linux Operating System by Paul S. Wang
Linux Operating System by Love
Linux Operating System by Isaak Seel
Linux Operating System by Karim Yaghmour and Jon Masters
Linux Operating System by Jason Cannon

